In-silico Molecular Docking of Coumarin and Naphthalene Derivatives from Pyrenacantha volubilis with the Pathological Mediators of Rheumatoid Arthritis

Author(s):  
Anjali P ◽  
Vimalavathini R

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease which mainly targets synovial membrane during its disease pathogenesis. Available therapeutic drugs for the treatment of RA provide only symptomatic relief and are associated with severe side effects. Herbal plants comprise many active biological compounds that cure the disease with minimal adverse effects. Pyrenacantha volubilis is a climber and member of Icacinaceae family. Gas chromatography- mass spectrometry (GC-MS) analysis of ethanolic extracts of leaves of Pyrenacantha volubilis (EEPV) reveals the presence of 2-isopropyl-5-methylcyclohexyl 3-(1-(4- chlorophenyl)-3-oxobutyl)-coumarin-4-yl carbonate and 1-naphthalenepropanol, alpha-ethyldecahydro-5- (hydroxymethyl)-alpha,5,8A-trimethyl-2-methyl phytoconstitutents. Hence these compounds were docked with various pathological mediators of RA using Autodock 4.2. The docking results unveils that these compounds had better binding energy against inflammatory, oxidative stress and receptor for advanced glycation end products (RAGE) mediators that plays a pivotal role in the progression of RA. However, this study warrants further in- vitro and in-vivo studies to be carried out to establish the anti-inflammatory and anti-arthritic activity of selected phytoconstitutents.

Planta Medica ◽  
2018 ◽  
Vol 85 (03) ◽  
pp. 239-248 ◽  
Author(s):  
Anju Benny ◽  
Jaya Thomas

AbstractAlzheimerʼs disease is a multifarious neurodegenerative disease that causes cognitive impairment and gradual memory loss. Several hypotheses have been put forward to postulate its pathophysiology. Currently, few drugs are available for the management of Alzheimerʼs disease and the treatment provides only symptomatic relief. Our aim is to review the relevant in vitro, in vivo, and clinical studies focused toward the potential uses of essential oils in the treatment of Alzheimerʼs disease. Scientific databases such as PubMed, ScienceDirect, Scopus, and Google Scholar from April 1998 to June 2018 were explored to collect data. We have conducted wide search on various essential oils used in different models of Alzheimerʼs disease. Out of 55 essential oils identified for Alzheimerʼs intervention, 28 have been included in the present review. A short description of in vivo studies of 13 essential oils together with clinical trial data of Salvia officinalis, Salvia lavandulifolia, Melissa officinalis, Lavandula angustifolia, and Rosmarinus officinalis have been highlighted. In vitro studies of remaining essential oils that possess antioxidant and anticholinesterase potential are also mentioned. Our literary survey revealed encouraging results regarding the various essential oils being studied in preclinical and clinical studies of Alzheimerʼs disease with significant effects in modulating the pathology through anti-amyloid, antioxidants, anticholinesterase, and memory-enhancement activity.


Nanomedicine ◽  
2019 ◽  
Vol 14 (16) ◽  
pp. 2169-2187 ◽  
Author(s):  
Ting Gong ◽  
Pei Zhang ◽  
Caifeng Deng ◽  
Yu Xiao ◽  
Tao Gong ◽  
...  

Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1595-1595
Author(s):  
Randall M Rossi ◽  
Marlene Balys ◽  
Dean Franklin ◽  
Valerie Grose ◽  
Richard I Fisher ◽  
...  

Abstract Previous studies in our lab have shown that the PKC-beta inhibitor, enzastaurin (LY317615), when used to treat a panel of human diffuse large cell lymphoma (DLCL) lines, was able to induce cell death in vitro and substantially reduce tumor growth in xenograft assays. These findings support the hypothesis that activation of PKC contributes to tumor cell survival and proliferation, which has been implicated in the pathogenesis of human B cell lymphomas. Specifically, PKC-beta activation is increased in tumor cells from patients with poor prognosis DLCL, suggesting that PKC-beta may be a target for therapeutic intervention. In the present study, we have explored the interaction of enzastaurin with a panel of well characterized therapeutic agents to evaluate whether its anti-tumor activity can potentially be enhanced. Drugs were chosen for analysis based either on known single agent activity in lymphoma, or by preclinical evaluation indicating potential synergy with enzastaurin. For in vitro culture assays (48–72 hr treatment), the addition of gemcitabine, rapamycin, or bortezomib, increased the cytotoxicity of enzastaurin from 2 to 7 fold. This effect was evident with multiple human DLCL cell lines, (OCI-Ly3, 7, 10, 19, and SUDHL-4, and 6), as well as two independent primary DLCL cultures. For in vivo studies, subcutaneous transplantation of the DLCL cell line OCI-Ly19, (previously engineered to express luciferase which allows for real time in vivo imaging), or a primary DLCL isolate, into immune deficient NOD/SCID mice formed reproducible tumors. Recipient animals were separated into uniform cohorts when the tumors were of <=500 cubic mm in size. The animals were then simultaneously or sequentially treated with enzastaurin, (150 mg/kg b.i.d. via oral gavage) and a secondary drug, either gemcitabine, (2.5 or 5.0 mg/kg 1x/3 days IP), bortezomib, (0.4 mg/kg twice weekly IP), rapamycin, (1.0 mg/kg, daily IP), or rituxan, (5 mg/kg, weekly IP). Imaging and analysis of tumor volumes showed that addition of either rituxan or rapamycin provided no additional benefit in comparison to enzastaurin alone during the course of treatment. In contrast, the combination of either gemcitabine or bortezomib with enzastaurin demonstrated significantly reduced tumor volumes in comparison to enzastaurin alone (17% to 38% greater decrease with enzastaurin + gemcitabine, and 50% greater decrease in tumor volume with enzastaurin + bortezomib). These data suggest that the use of enzastaurin in combination with existing therapeutic drugs (gemcitabine or bortezomib) has the potential to limit tumor size/growth while lowering dose levels and thereby reducing potential side effects associated with traditional treatments.


2009 ◽  
Vol 24 (7) ◽  
pp. 744-751 ◽  
Author(s):  
Gary N. W. Leung ◽  
Francis P. W. Tang ◽  
Terence S. M. Wan ◽  
Colton H. F. Wong ◽  
Kenneth K. H. Lam ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
In-Soo Yoon ◽  
Dae-Hun Park ◽  
Min-Suk Bae ◽  
Deuk-Sil Oh ◽  
Nan-Hui Kwon ◽  
...  

Quercus acuta Thunb. (Fagaceae) (QA) is cultivated as a dietary and ornamental plant in China, Japan, South Korea, and Taiwan. It has been widely used as the main ingredient of acorn tofu, a traditional food in China and South Korea. The aim of this study was to determine in vitro and in vivo xanthine oxidase (XO) inhibitory and antihyperuricemic activities of an ethyl acetate extract of QA leaf (QALE) and identify its active phytochemicals using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography (LC) systems. The QALE was found to possess potent in vitro antioxidant and XO inhibitory activities. In vivo study using hyperuricemic mice induced with potassium oxonate demonstrated that the QALE could inhibit hepatic XO activity at a relatively low oral dose (50 mg/kg) and significantly alleviate hyperuricemia to a similar extent as allopurinol. Several active compounds including vitamin E known to possess XO inhibitory activity were identified from the QALE. To the best of our knowledge, this is the first study that reports the active constituents and antihyperuricemic effect of QA, suggesting that it is feasible to use QALE as a food therapy or alternative medicine for alleviating hyperuricemia and gout.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 742
Author(s):  
Yue Yu ◽  
Zhou Wang ◽  
Qian Ding ◽  
Xiangbin Yu ◽  
Qinyan Yang ◽  
...  

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that mainly erodes joints and surrounding tissues, and if it is not treated in time, it can cause joint deformities and loss of function. S-propargyl-cysteine (SPRC) is an excellent endogenous hydrogen sulfide donor which can relieve the symptoms of RA through the promotion of H2S release via the CSE/H2S pathway in vivo. However, the instant release of H2S in vivo could potentially limit its further clinical use. To solve this problem, in this study, a SPRC-loaded poly(lactic acid) (PLA) microsphere (SPRC@PLA) was prepared, which could release SPRC in vitro in a sustained manner, and further promote sustained in vivo H2S release. Furthermore, its therapeutical effect on RA in rats was also studied. A spherical-like SPRC@PLA was successfully prepared with a diameter of approximately 31.61 μm, yielding rate of 50.66%, loading efficiency of 6.10% and encapsulation efficiency of 52.71%. The SPRC@PLA showed significant prolonged in vitro SPRC release, to 4 days, and additionally, an in vivo H2S release around 3 days could also be observed. In addition, a better therapeutical effect and prolonged administration interval toward RA rats was also observed in the SPRC@PLA group.


2019 ◽  
Vol 19 (4) ◽  
pp. 303-314 ◽  
Author(s):  
Hong Duan ◽  
Ke-feng Zhai ◽  
Ghulam J. Khan ◽  
Jie Zhou ◽  
Ting-yan Cao ◽  
...  

Background:Compound Fengshiding capsule (CFC), is a Chinese formulation from herbal origin including Alangium platanifolium, Angelicae dahurica, Cynanchum paniculatum and Glycyrrhiza uralensis. CFC is widely used as clinical therapy against rheumatoid arthritis. However, its exact mechanism of action has not been explored yet.Methods:In order to explore the synergistic mechanism of CFC, we designed a study adopting network pharmacology scheme to screen the action targets in relation to the CFC components. The study analyses target facts of salicin, paeonol, liquiritin and imperatorin from PubMed database, and explores the potential pharmacological targets of rheumatoid arthritis, cervical neuralgia and sciatica related diseases for their interaction.Results:The results of boosted metabolic pathway showed that the chemical components of CFC interrupted many immune-related pathways, thus participating in immunity regulation of the body and playing a role in the treatment of rheumatism. Collectively, CFC has apoptotic, oxidative stress modulatory and anti-inflammatory effects that accumulatively serve for its clinical application against rheumatoid arthritis.Conclusion:Conclusively, our findings from present study reconnoiters and compacts systematic theoretical approach by utilizing the network pharmacology mechanism of four effective components for the treatment of rheumatism indicating sufficient potential drug targets associated with CFC against rheumatism. These interesting findings entreaties for further in vitro and in vivo studies on the mechanism of compound active ingredient against rheumatism.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 658 ◽  
Author(s):  
Lucia Morelli ◽  
Sara Gimondi ◽  
Marta Sevieri ◽  
Lucia Salvioni ◽  
Maria Guizzetti ◽  
...  

One of the goals of the pharmaceutical sciences is the amelioration of targeted drug delivery. In this context, nanocarrier-dependent transportation represents an ideal method for confronting a broad range of human disorders. In this study, we investigated the possibility of improving the selective release of the anti-cancer drug paclitaxel (PTX) in the gastro-intestinal tract by encapsulating it into the biodegradable nanoparticles made by FDA-approved poly(lactic-co-glycolic acid) (PLGA) and coated with polyethylene glycol to improve their stability (PLGA-PEG-NPs). Our study was performed by combining the synthesis and characterization of the nanodrug with in vivo studies of pharmacokinetics after oral administration in mice. Moreover, fluorescent PLGA-nanoparticles (NPs), were tested both in vitro and in vivo to observe their fate and biodistribution. Our study demonstrated that PLGA-NPs: (1) are stable in the gastric tract; (2) can easily penetrate inside carcinoma colon 2 (CaCo2) cells; (3) reduce the PTX absorption from the gastrointestinal tract, further limiting systemic exposure; (4) enable PTX local targeting. At present, the oral administration of biodegradable nanocarriers is limited because of stomach degradation and the sink effect played by the duodenum. Our findings, however, exhibit promising evidence towards our overcoming these limitations for a more specific and safer strategy against gastrointestinal disorders.


Author(s):  
Ezgi Eroğlu ◽  
Hakan Balcı ◽  
Veysel Baskın ◽  
Zuhal Aktuna

The current outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in the wholesale market in Wuhan, China in the last months of 2019 and spread to almost all countries in the world. Although there is currently no specific treatment for COVID-19, certain agents are used worldwide, based on in vitro, in vivo studies, and randomized controlled trials. In this review, brief information about these drugs used for the treatment of COVID-19, the results of the conducted studies and the possible adverse effects of the drugs are summarized. We hope that this review will provide an impression of the most current therapeutic drugs used to prevent, control and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2. Key Words: COVID-19, SARS CoV-2, pharmacotherapeutics


Sign in / Sign up

Export Citation Format

Share Document