Activation of Caspase-3 by Terpenoids and Flavonoids in Different Types of Cancer Cells

2020 ◽  
Vol 20 (21) ◽  
pp. 1876-1887
Author(s):  
Nusrat Masood ◽  
Vijaya Dubey ◽  
Suaib Luqman

Background: Caspase-3 is accountable for the execution of apoptosis. Recently, it has gained attention as a promising target for the discovery of natural products as anticancer agents. Methods: We examined the efficacy of two different sets of natural products (terpenoids and flavonoids) towards caspase-3 activity adopting in silico, cell-free and cell-based activity and real-time gene expression analysis. Results: It was observed that terpenes activate caspase-3 activity in both the cell-free and cell-based systems, which was supported by the gene expression analysis, binding energy and activation constant. Flavonoids’ action, however, was limited to the cell-based system and transcriptional regulation suggesting their indirect association, which enhanced the enzyme activity and up-regulated the expression of mRNA levels in the cells. Among the tested natural products, (+) carvone was observed to be the best activator of caspase-3 in K562 (34.4 μM), WRL-68 (22.3 μM), HeLa (18.7 μM), MCF-7 (39.4 μM) and MDA-MB-231 cell lines (45.1 μM). Conclusion: Overall, terpenoids have a persistent activation of caspase-3 in all the investigated systems, while flavonoids circuitously affect the enzyme activity.

2021 ◽  
Vol 11 (5) ◽  
pp. 12877-12885

Pseudomonas aeruginosa is one of the most common pathogenic bacteria that cause nosocomial infection. Unfortunately, the irrational use of antibiotics has created a surge in P. aeruginosa resistance nowadays. To overcome this situation, new antibacterial compounds are urgently needed. One of the potential sources to obtain such antibacterial compounds is roselle calyx. This research was carried out using two experimental approaches, survival assay and gene expression analysis, to examine the in vivo antibacterial effect of water fraction of roselle calyx (WFR) against Pseudomonas aeruginosa in Drosophila model of infection. Survival assay was used to demonstrate the impact of treatment on the lifespan of the infected host. The measurement of immune-related Dpt mRNA levels by reverse-transcriptase quantitative PCR (RT-qPCR) was used to assess whether immunostimulation is involved in the antibacterial protection of WFR against P. aeruginosa. The result demonstrated that WFR at concentrations of 0.8% and 2% were able to enhance P. aeruginosa-infected flies' survival. Furthermore, gene expression analysis showed the insignificant difference between WFR-treated flies and healthy control flies at all tested concentrations, implying the non-involvement of Imd-Dpt-mediated pathway immunity in the antipseudomonal protection of WFR. Taken together, our data suggested the in vivo antibacterial activity of WFR against P. aeruginosa in the fruit fly model of infection.


RNA Biology ◽  
2019 ◽  
Vol 16 (5) ◽  
pp. 661-674 ◽  
Author(s):  
Martin Porsch ◽  
Esra Özdemir ◽  
Martin Wisniewski ◽  
Sebastian Graf ◽  
Fabian Bull ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258363
Author(s):  
Ola D. A. Shammout ◽  
Naglaa S. Ashmawy ◽  
Sarra B. Shakartalla ◽  
Alaa M. Altaie ◽  
Mohammad H. Semreen ◽  
...  

Drug resistance is responsible for the failure of many available anticancer drugs. Several studies have demonstrated the association between the alteration in sphingolipids (SPLs) and the development of drug resistance. To investigate the association between SPLs metabolism and doxorubicin (dox)-resistance in MCF-7 cells, a comparative sphingolipidomics analysis between dox-sensitive (parental) and -resistant MCF-7 cell lines along with validation by gene expression analysis were conducted. A total of 31 SPLs representing 5 subcategories were identified. The data obtained revealed that SPLs were clustered into two groups differentiating parental from dox-resistant cells. Eight SPLs were significantly altered in response to dox-resistance including SM (d18:1/16), SM (d18:1/24:2), SM (d18:1/24:0), SM (d18:1/20:0), SM (d18:1/23:1), HexCer (d18:1/24:0), SM (d18:1/15:0), DHSM (d18:0/20:0). The current study is the first to conclusively ascertain the potential involvement of dysregulated SPLs in dox-resistance in MCF-7 cells. SPLs metabolism in dox-resistant MCF-7 cells is oriented toward the downregulation of ceramides (Cer) and the concomitant increase in sphingomyelin (SM). Gene expression analysis has revealed that dox-resistant cells tend to escape from the Cer-related apoptosis by the activation of SM-Cer and GluCer-LacCer-ganglioside pathways. The enzymes that were correlated to the alteration in SPLs metabolism of dox-resistant MCF-7 cells and significantly altered in gene expression can represent potential targets that can represent a winning strategy for the future development of promising anticancer drugs.


2017 ◽  
Author(s):  
Rayna M. Harris ◽  
Adriane G. Otopalik ◽  
Colin J. Smith ◽  
Dirk Bucher ◽  
Jorge Golowasch ◽  
...  

ABSTRACTGene expression analysis from single cells has become increasingly prominent across biological disciplines; thus, it is important to train students in these approaches. Here, we present an experimental and analysis pipeline that we developed for the Neural Systems & Behavior (NS&B) course at Marine Biological Laboratory. Our approach used the Maxwell® 16 LEV simplyRNA Tissue Kit and GoTaq® 2-Step RT-qPCR System for gene expression analysis from single neurons of the crustacean stomatogastric ganglion, a model system to study the generation of rhythmic motor patterns. We used double-stranded RNA to knockdown expression of a putative neuromodulator-activated sodium channel. We then examined the electrophysiological responses to known neuromodulators and confirmed that the response was reduced. Finally, we measured how mRNA levels of several ion channel genes changed in response. Our results provide new insights into the neural mechanisms underlying the generation and modulation of rhythmic motor patterns.


Sign in / Sign up

Export Citation Format

Share Document