Nanotechnology Assisted Targeted Drug Delivery for Bone Disorders: Potentials and Clinical Perspectives

2020 ◽  
Vol 20 (30) ◽  
pp. 2801-2819
Author(s):  
Xiaofeng Zhao ◽  
Laifeng Li ◽  
Meikai Chen ◽  
Yifan Xu ◽  
Songou Zhang ◽  
...  

Nanotechnology and its allied modalities have brought revolution in tissue engineering and bone healing. The research on translating the findings of the basic and preclinical research into clinical practice is ongoing. Advances in the synthesis and design of nanomaterials along with advances in genomics and proteomics, and tissue engineering have opened a bright future for bone healing and orthopedic technology. Studies have shown promising outcomes in the design and fabrication of porous implant substrates that can be exploited as bone defect augmentation and drug-carrier devices. However, there are dozens of applications in orthopedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from tens 10s of nanometers to a few micrometers. Nanotechnology has made promising advances in the synthesis of scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. This study reviews the basic and translational sciences and clinical implications of the nanotechnology in tissue engineering and bone diseases. Recent advances in NPs assisted osteogenic agents, nanocomposites, and scaffolds for bone disorders are discussed.

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


2021 ◽  
Vol 22 (12) ◽  
pp. 6504
Author(s):  
Peter Sang Uk Park ◽  
William Y. Raynor ◽  
Yusha Sun ◽  
Thomas J. Werner ◽  
Chamith S. Rajapakse ◽  
...  

In a healthy body, homeostatic actions of osteoclasts and osteoblasts maintain the integrity of the skeletal system. When cellular activities of osteoclasts and osteoblasts become abnormal, pathological bone conditions, such as osteoporosis, can occur. Traditional imaging modalities, such as radiographs, are insensitive to the early cellular changes that precede gross pathological findings, often leading to delayed disease diagnoses and suboptimal therapeutic strategies. 18F-sodium fluoride (18F-NaF)-positron emission tomography (PET) is an emerging imaging modality with the potential for early diagnosis and monitoring of bone diseases through the detection of subtle metabolic changes. Specifically, the dissociated 18F- is incorporated into hydroxyapatite, and its uptake reflects osteoblastic activity and bone perfusion, allowing for the quantification of bone turnover. While 18F-NaF-PET has traditionally been used to detect metastatic bone disease, recent literature corroborates the use of 18F-NaF-PET in benign osseous conditions as well. In this review, we discuss the cellular mechanisms of 18F-NaF-PET and examine recent findings on its clinical application in diverse metabolic, autoimmune, and osteogenic bone disorders.


2021 ◽  
Vol 22 (10) ◽  
pp. 5278
Author(s):  
Andrew E. Massey ◽  
Shabnam Malik ◽  
Mohammad Sikander ◽  
Kyle A. Doxtater ◽  
Manish K. Tripathi ◽  
...  

Exosomes are nanoscale vesicles generated by cells for intercellular communication. Due to their composition, significant research has been conducted to transform these particles into specific delivery systems for various disease states. In this review, we discuss the common isolation and loading methods of exosomes, some of the major roles of exosomes in the tumor microenvironment, as well as discuss recent applications of exosomes as drug delivery vessels and the resulting clinical implications.


2021 ◽  
pp. 1-15
Author(s):  
Haysam M.M.A.M. Ahmed ◽  
Liliana S. Moreira Teixeira

The development of new therapies is tremendously hampered by the insufficient availability of human model systems suitable for preclinical research on disease target identification, drug efficacy, and toxicity. Thus, drug failures in clinical trials are too common and too costly. Animal models or standard 2D in vitro tissue cultures, regardless of whether they are human based, are regularly not representative of specific human responses. Approaching near human tissues and organs test systems is the key goal of organs-on-chips (OoC) technology. This technology is currently showing its potential to reduce both drug development costs and time-to-market, while critically lessening animal testing. OoC are based on human (stem) cells, potentially derived from healthy or disease-affected patients, thereby amenable to personalized therapy development. It is noteworthy that the OoC market potential goes beyond pharma, with the possibility to test cosmetics, food additives, or environmental contaminants. This (micro)tissue engineering-based technology is highly multidisciplinary, combining fields such as (developmental) biology, (bio)materials, microfluidics, sensors, and imaging. The enormous potential of OoC is currently facing an exciting new challenge: emulating cross-communication between tissues and organs, to simulate more complex systemic responses, such as in cancer, or restricted to confined environments, as occurs in osteoarthritis. This review describes key examples of multiorgan/tissue-on-chip approaches, or linked organs/tissues-on-chip, focusing on challenges and promising new avenues of this advanced model system. Additionally, major emphasis is given to the translation of established tissue engineering approaches, bottom up and top down, towards the development of more complex, robust, and representative (multi)organ/tissue-on-chip approaches.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Lu-Zhao Di ◽  
Vanessa Couture ◽  
Élisabeth Leblanc ◽  
Yasaman Alinejad ◽  
Jean-François Beaudoin ◽  
...  

Low dose microcomputed tomography (μCT) is a recently matured technique that enables the study of longitudinal bone healing and the testing of experimental treatments for bone repair. This imaging technique has been used for studying craniofacial repair in mice but not in an orthopedic context. This is mainly due to the size of the defects (approximately 1.0 mm) in long bone, which heal rapidly and may thus negatively impact the assessment of the effectiveness of experimental treatments. We developed a longitudinal low doseμCT scan analysis method combined with a new image segmentation and extraction software using Hounsfield unit (HU) scores to quantitatively monitor bone healing in small femoral cortical defects in live mice. We were able to reproducibly quantify bone healing longitudinally over time with three observers. We used high speed intramedullary reaming to prolong healing in order to circumvent the rapid healing typical of small defects. Bone healing prolongation combined withμCT imaging to study small bone defects in live mice thus shows potential as a promising tool for future preclinical research on bone healing.


2008 ◽  
Vol 32 (9) ◽  
pp. 1150-1157 ◽  
Author(s):  
Youchao Tang ◽  
Wei Tang ◽  
Yunfeng Lin ◽  
Jie Long ◽  
Hang Wang ◽  
...  

2018 ◽  
Vol 941 ◽  
pp. 2495-2500 ◽  
Author(s):  
Anne Margaux Collignon ◽  
Gaël Y. Rochefort

Bone displays an amazing capacity for endogenous self-remodeling. However, compromised bone healing and recovering is on the ascent because of population aging, expanding rate of bone injury and the clinical requirement for the advancement of elective choices to autologous bone unions. Current strategies, including biomolecules, cell treatments, biomaterials and diverse combinations of these, are presently created to encourage the vascularization and the engraftment of the grafts, to reproduce at last a bone tissue with similar properties and attributes of the local bone. In this review, we look through the current techniques that are right now created, utilizing biomolecules, cells and biomaterials, to initiate, coordinate and potentiate bone regeneration and healing after damage and further talk about the natural procedures related with this repair.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1424
Author(s):  
Chunhua Yang ◽  
Didier Merlin

Colorectal cancer (CRC) is a prevalent disease worldwide, and patients at late stages of CRC often suffer from a high mortality rate after surgery. Adjuvant chemotherapeutics (ACs) have been extensively developed to improve the survival rate of such patients, but conventionally formulated ACs inevitably distribute toxic chemotherapeutic drugs to healthy organs and thus often trigger severe side effects. CRC cells may also develop drug resistance following repeat dosing of conventional ACs, limiting their effectiveness. Given these limitations, researchers have sought to use targeted drug delivery systems (DDSs), specifically the nanotechnology-based DDSs, to deliver the ACs. As lipid-based nanoplatforms have shown the potential to improve the efficacy and safety of various cytotoxic drugs (such as paclitaxel and vincristine) in the clinical treatment of gastric cancer and leukemia, the preclinical progress of lipid-based nanoplatforms has attracted increasing interest. The lipid-based nanoplatforms might be the most promising DDSs to succeed in entering a clinical trial for CRC treatment. This review will briefly examine the history of preclinical research on lipid-based nanoplatforms, summarize the current progress, and discuss the challenges and prospects of using such approaches in the treatment of CRC.


Sign in / Sign up

Export Citation Format

Share Document