An Updated Review on Betacoronavirus Viral Entry Inhibitors: Learning from Past Discoveries to Advance COVID-19 Drug Discovery

Author(s):  
Dima A. Sabbah ◽  
Rima Hajjo ◽  
Sanaa K. Bardaweel ◽  
Haizhen A. Zhong

: One year after its first outbreak reported in China, coronavirus disease 2019 (COVID-19) pandemic is still sweeping the World causing serious infections and claiming more fatalities. COVID-19 is caused by the novel corona virus SARS-CoV-2, which belongs to the genus Betacoronavirus (β-CoVs) which is of greatest clinical importance since it contains many other viruses that cause respiratory disease in humans including OC43, HKU1, SARS-CoV and MERS. The spike (S) glycoprotein of β-CoVs is a key virulence factor determining disease pathogenesis and host tropism, and it also mediates virus binding to host’s receptors to allow viral entry into host cells, i.e., the first step in virus lifecycle. This, viral entry inhibitors are considered promising putative drugs for COVID-19. Herein, we mined the biomedical literature for viral entry inhibitors of other corona viruses, with special emphasis on β-CoVs entry inhibitors. We also outlined the structural features of SARS-CoV-2 S protein and how it differs from other β-CoVs to better understand the structural determinants of S protein binding to its human receptor (ACE2). This review highlighted several promising viral entry inhibitors as potential treatments for COVID-19.

2020 ◽  
Vol 21 (16) ◽  
pp. 5707 ◽  
Author(s):  
Rolando Cannalire ◽  
Irina Stefanelli ◽  
Carmen Cerchia ◽  
Andrea R. Beccari ◽  
Sveva Pelliccia ◽  
...  

The pandemic evolution of SARS-CoV-2 infection is forcing the scientific community to unprecedented efforts to explore all possible approaches against COVID-19. In this context, targeting virus entry is a promising antiviral strategy for controlling viral infections. The main strategies pursued to inhibit the viral entry are considering both the virus and the host factors involved in the process. Primarily, direct-acting antivirals rely on inhibition of the interaction between ACE2 and the receptor binding domain (RBD) of the Spike (S) protein or targeting the more conserved heptad repeats (HRs), involved in the membrane fusion process. The inhibition of host TMPRSS2 and cathepsins B/L may represent a complementary strategy to be investigated. In this review, we discuss the development entry inhibitors targeting the S protein, as well as the most promising host targeting strategies involving TMPRSS2 and CatB/L, which have been exploited so far against CoVs and other related viruses.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


2021 ◽  
Vol 28 ◽  
Author(s):  
Prem Kumar Kushwaha ◽  
Neha Kumari ◽  
Sneha Nayak ◽  
Keshav Kishor ◽  
Ashoke Sharon

: Outbreaks due to Severe Acute Respiratory Syndrome-Corona virus 2 (SARS-CoV-2) initiated in Wuhan city, China, in December 2019 which continued to spread internationally, posing a pandemic threat as declared by WHO and as of March 10, 2021, confirmed cases reached 118 million along with 2.6 million deaths worldwide. In the absence of specific antiviral medication, symptomatic treatment and physical isolation remain the options to control the contagion. The recent clinical trials on antiviral drugs highlighted some promising compounds such as umifenovir (haemagglutinin-mediated fusion inhibitor), remdesivir (RdRp nucleoside inhibitor), and favipiravir (RdRp Inhibitor). WHO launched a multinational clinical trial on several promising analogs as a potential treatment to combat SARS infection. This situation urges a holistic approach to invent safe and specific drugs as a prophylactic and therapeutic cure for SARS-related-viral diseases, including COVID-19. : It is significant to note that researchers worldwide have been doing their best to handle the crisis and have produced an extensive and promising literature body. It opens a scope and allows understanding the viral entry at the molecular level. A structure-based approach can reveal the molecular-level understanding of viral entry interaction. The ligand profiling and non-covalent interactions among participating amino-acid residues are critical information to delineate a structural interpretation. The structural investigation of SARS virus entry into host cells will reveal the possible strategy for designing drugs like entry inhibitors. : The structure-based approach demonstrates details at the 3D molecular level. It shows specificity about SARS-CoV-2 spike interaction, which uses human angiotensin-converting enzyme 2 (ACE2) as a receptor for entry, and the human protease completes the process of viral fusion and infection. : The 3D structural studies reveal the existence of two units, namely S1 and S2. S1 is called a receptor-binding domain (RBD) and responsible for interacting with the host (ACE2), and the S2 unit participates in the fusion of viral and cellular membranes. TMPRSS2 mediates the cleavage at S1/S2 subunit interface in S-protein of SARS CoV-2, leading to viral fusion. Conformational difference associated with S1 binding alters ACE2 interaction and inhibits viral fusion. Overall, the detailed 3D structural studies help understand the 3D structural basis of interaction between viruses with host factors and available scope for the new drug discovery process targeting SARS-related virus entry into the host cell.


2021 ◽  
Author(s):  
Wenlin Ren ◽  
Xiaohui Ju ◽  
Mingli Gong ◽  
Jun Lan ◽  
Yanying Yu ◽  
...  

ABSTRACTRecently, highly transmissible SARS-CoV-2 variants B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.618 were identified in India with mutations within the spike proteins. The spike protein of Kappa contains four mutations E154K, L452R, E484Q and P681R, and Delta contains L452R, T478K and P681R, while B.1.618 spike harbors mutations Δ145-146 and E484K. However, it remains unknown whether these variants have altered in their entry efficiency, host tropism, and sensitivity to neutralizing antibodies as well as entry inhibitors. In this study, we found that Kappa, Delta or B.1.618 spike uses human ACE2 with no or slightly increased efficiency, while gains a significantly increased binding affinity with mouse, marmoset and koala ACE2 orthologs, which exhibits limited binding with WT spike. Furthermore, the P618R mutation leads to enhanced spike cleavage, which could facilitate viral entry. In addition, Kappa, Delta and B.1.618 exhibits a reduced sensitivity to neutralization by convalescent sera owning to the mutation of E484Q, T478K, Δ145-146 or E484K, but remains sensitive to entry inhibitors-ACE2-lg decoy receptor. Collectively, our study revealed that enhanced human and mouse ACE2 receptor engagement, increased spike cleavage and reduced sensitivity to neutralization antibodies of Kappa, Delta and B.1.618 may contribute to the rapid spread of these variants and expanded host range. Furthermore, our result also highlighted that ACE2-lg could be developed as broad-spectrum antiviral strategy against SARS-CoV-2 variants.


Author(s):  
Mojtaba Bakhtiari ◽  
Kamyar Asadipooya

Abstract: A new coronavirus pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2], has been on the rise. This virus is fatal for broad groups of populations, including elderly, men, and patients with comorbidities among which obesity is a possible risk factor. The pathophysiologic connections between obesity/metainflammation and COVID-19 may be directly related to increasing soluble ACE2 (angiotensin-converting enzyme 2] levels which potentiates the viral entrance into the host cells, or indirectly related to dysregulation of immune system, microvascular injury and hypercoagulability. The SARS-CoV-2 S-glycoprotein interacts mainly with ACE2 or possibly DDP4 receptors to enter into the host cells. The host proteases, especially TMPRSS2 (transmembrane protease serine 2], support the fusion process and virus entry. While membranous ACE2 is considered a port of entry to the cell for SARS-CoV-2, it seems that soluble ACE2 retains its virus binding capability and enhances its entry into the cells. Interestingly, ACE2 on cell membrane may have protective roles by diminishing cytokine storm-related injuries to the organs. Applying medications that can reduce soluble ACE2 levels, antagonizing TMPRSS2 or blocking DDP4 can improve the outcomes of COVID-19. Metformin and statins through immunomodulatory activities, Orlistat by reducing viral replication, and thiazolidinediones by upregulating ACE2 expression have potential beneficial effects against COVID-19. However, the combination of dipeptidyl peptidase-4 (DDP4] inhibitors and spironolactone/eplerenone seems to be more effective by reducing soluble ACE2 level, antagonizing TMPRSS2, maintaining ACE2 on cell membrane and reducing risk of viral entry into the cells.


2020 ◽  
Author(s):  
Javad Khanali ◽  
Mohammadreza Azangou-khyavy ◽  
Yasaman Asaadi ◽  
Monire Jamalkhah ◽  
Jafar Kiani

Abstract During the ongoing COVID-19 pandemic, besides the vaccines, there is an urgent need for the development of effective therapeutics. Although significant efforts have been made to develop such therapies, there are currently no approved treatments for COVID-19. One of the potential therapeutic targets is the spike (S) protein of SARS-CoV-2, which mediates viral entry into host cells. It has been shown that targeting S protein could neutralize viruses and hinder their binding to the cells. Among known viral neutralizing agents, aptamers’ potential in neutralizing the SARS-Cov-2 virus has not yet been revealed. In addition, aptamers could also be used for targeted delivery of drugs and other genetic elements, such as siRNAs, to the cells. Small interfering RNAs (siRNAs) are reliable tools for gene knockdown via RNA degradation. siRNAs have been implemented previously against some viruses, including SARS-CoV, to target its genome. Recently, potential siRNA sequences and their targets in the SARS-CoV-2 genome have been reported, and the efficiency of siRNAs in inhibiting SARS-CoV-2 infection is being revealed. An alternative antiviral approach we propose here relies on an aptamer-siRNA-based system for the treatment of COVID-19. These aptamers could neutralize viruses by hindering their receptor-mediated endocytosis, and siRNAs could suppress the expression of viral genes and halt various aspects of its pathogenesis whenever the aptamers fail to neutralize the virus.


2021 ◽  
Vol 28 ◽  
Author(s):  
Hao Lin ◽  
Srinivasulu Cherukupalli ◽  
Da Feng ◽  
Shenghua Gao ◽  
Dongwei Kang ◽  
...  

: COVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin-converting enzyme 2 (ACE2), as well as the cleavage effect of type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions, to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Donghui Zhu ◽  
Zhen Zhao

Although COVID-19 is associated with severe respiratory dysfunctions, conspicuous vascular complications and neurological manifestations have been reported worldwide. Of note, two distinctive features have been noticed in severe patients, progressive increase of inflammation and an unusual trend of hypercoagulation. Interestingly, evidence is mounting that healthy blood vessels protect children from serious effects of COVID-19, such as stroke. These findings suggest vascular complications play a key role in the progress of COVID-19, warranting an investigation to its pathophysiology and treatment strategy related to vascular cells. Cell entry of this SARS-CoV-2 virus depends on binding of the viral spike (S) proteins to cellular receptor ACE2, which could be a key target for blocking the viral entry into host cells. ACE2 is a zinc (Zn) binding metallopeptidase while Zn possesses distinct antiviral properties against many human viruses including coronaviruses. Although the mechanistic studies are lacking, Zn appears to inhibit viral protease and polymerase enzymatic processes, and physical processes such as virus attachment, cell entry, and uncoating. In fact, our data showed that ACE2 has multiple affinity binding sites for Zn. Excess bindings of ionic Zn to ACE2 led to its conformational or functional change, therefore, interfering with its ability to metabolize its substrate as well as inhibiting its binding to S protein. Computational modeling also revealed that one critical Zn binding motif is located in ACE2’s binding domain to S protein, and docking affinity of S protein to ACE2 was significantly reduced after Zn binding to this specific site. Moreover, cell and animal studies using pseudo-virus bearing CoV-2-S protein validated that significantly lower infection of vascular cells in the presence of Zn was observed. Thus, targeting vascular complications in COVID-19 may offer strong benefits including the potential therapeutic role of Zn.


2020 ◽  
Vol 117 (3) ◽  
pp. 1438-1446 ◽  
Author(s):  
Tzu-Jing Yang ◽  
Yen-Chen Chang ◽  
Tzu-Ping Ko ◽  
Piotr Draczkowski ◽  
Yu-Chun Chien ◽  
...  

Feline infectious peritonitis virus (FIPV) is an alphacoronavirus that causes a nearly 100% mortality rate without effective treatment. Here we report a 3.3-Å cryoelectron microscopy (cryo-EM) structure of the serotype I FIPV spike (S) protein, which is responsible for host recognition and viral entry. Mass spectrometry provided site-specific compositions of densely distributed high-mannose and complex-type N-glycans that account for 1/4 of the total molecular mass; most of the N-glycans could be visualized by cryo-EM. Specifically, the N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV S protein result in a unique propeller-like conformation, underscoring the importance of glycosylation in maintaining protein structures. The cleavage site within the S2 subunit responsible for activation also showed distinct structural features and glycosylation. These structural insights provide a blueprint for a better molecular understanding of the pathogenesis of FIP.


Author(s):  
Dima A. Sabbah ◽  
Rima Hajjo ◽  
Sanaa K. Bardaweel ◽  
Haizhen A. Zhong

: Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses with spike (S) protein projections that allow the virus to enter and infect host cells. The S protein is a key virulence factor determining viral pathogenesis, host tropism, and disease pathogenesis. There are currently diverse corona viruses that are known to cause disease in humans. The occurrence of Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), as fatal human CoV diseases, has induced significant interest in the medical field. The novel coronavirus disease (COVID-19) is an infectious disease caused by a novel strain of coronavirus (SAR-CoV-2). The SARSCoV2 outbreak has been evolved in Wuhan, China, in December 2019, and identified as a pandemic on March 2020 resulting in 53.24 M cases and 1.20M deaths worldwide. SARS-CoV-2 main proteinase (MPro), a key protease of CoV-2, mediates viral replication and transcription. SARS-CoV-2 MPro has been emerged as an attractive target for SARS-CoV-2 drug design and development. Diverse scaffolds have been released targeting SARS-CoV-2 MPro. In this review, we culminate the latest published information about SARS-CoV-2 main proteinase (MPro) and reported inhibitors.


Sign in / Sign up

Export Citation Format

Share Document