Trends of pharmaceutical design of Endophytes as anti-infective

Author(s):  
Pragya Tiwari ◽  
Yashdeep Srivastava ◽  
Hanhong Bae

: Plant-endophyte associations represent an inexhaustible source of novel metabolites, exhibiting significance in environment, agriculture and pharmaceutical perspectives. The global outbreak of life threatening diseases necessitate a need for a more targeted approach through efficient drug-discovery programs. In recent times, endophytes as “bio-factories” have been extensively explored for the production of novel, bioactive metabolites demonstrating therapeutic properties. Resources in computational biology co-integrated with combinational chemistry have made significant contributions in this field, aiding in the discovery and screening of potential “drug-like” molecules from endophytes. The review provides a meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bio-prospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as anti-infective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophyte biology and research require a better understanding of endophyte dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program.

2021 ◽  
Vol 21 (17) ◽  
pp. 1517-1518
Author(s):  
Dharmendra Kumar Yadav

The discovery and utilization of novel metabolites from natural sources are gaining momentum in the present era. The drug discovery programs have witnessed a remarkable shift from conventional medicines to exploiting natural products and their “value addition”, for treating lifethreatening diseases. The global outbreak of life-threatening diseases namely Ebola, SARS,including infections of the bloodstream (bacteremia), heart valves (endocarditis), lungs (pneumonia), and brain (meningitis) and AIDS calls for a more targeted approach to effectively combat the emerging diseases. In the present scenario, natural products and their extracts are being explored extensively for the treatment of various life threatening diseases. In this thematic issue, several review articles contributed by the scientist and researchers in the different areas of medicinal chemistry, synthetic chemistry, new emerging multi-drug targets were collected. This issue begins with a review article on the “Chemistry and Pharmacology of Natural Catechins from Camellia sinensis as anti-MRSA agents” by Gaur et al. and focuses on the spread of MRSA strains is of great concern because of limited treatment options for staphylococcal infections, since these strains are resistant to the entire class of β-lactam antibiotics. In addition, MRSA exhibits resistance to other classes of antimicrobial agents such as fluoroquinolones, cephalosporins, aminoglycosides, macrolide and even glycopeptides (vancomycin and teicoplanine), leading to the emergence of resistant strains such as glycopeptide intermediate (GISA) and resistant strain (GRSA) of S. aureus. In this review, chemical constituents responsible for the anti-MRSA activity of tea are explored [1]. The next article of this issue is a review article on the “Recent Advancements in the Synthesis and Chemistry of Benzofused Nitrogen- and Oxygen-based Bioactive Heterocycles” by Sharma et al. which focuses on medicinal importance of these bioactive benzo-fused heterocycles; special attention has been given to their synthesis as well as medicinal/pharmaceutical properties in detail [2]. “Trends in pharmaceutical design of Endophytes as anti-infective,” by Tiwari et al., is the third article in this issue. The review focused on the meta-analysis of bioactive metabolite production from endophytes, extensively discussing the bioprospection of natural products for pharmaceutical applications. In light of the emerging importance of endophytes as antiinfective agents, an exploration of the pharmaceutical design of novel chemical entities and analogues has enabled efficient and cost-effective drug discovery programs. However, bottlenecks in endophytic biology and research requires a better understanding of endophytic dynamics and mechanism of bioactive metabolite production towards a sustainable drug discovery program [3]. The last article of this issue is also research article on “Recent development of tetrahydro-quinoline/isoquinoline based compounds as anticancer agents” by Yadav et al. The article reported the synthesis of potent tetrahydroquinoline/isoquinoline molecules of the last 10 years with their anticancer properties in various cancer cell lines and stated their half-maximal inhibitory concentration (IC50). In addition, we also considered the discussion of molecular docking and structural activity relationship wherever provided to understand the possible mode of activity an target involved and structural features responsible for the better activity, so the reader can directly find detail for designing new anticancer agents. [4]. Finally I would like to thank all authors who contributed to this issue, titled “Recent advances on small molecule medicinal chemistry to treat human diseases”.


Bionatura ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 2187-2192
Author(s):  
Rashid Rahim Hateet ◽  
Zainab Alag Hassan ◽  
Abdulameer Abdullah Al-Mussawi ◽  
Shaima Rabeea Banoon

The present study aimed to optimize cultural conditions for optimum bioactive metabolite production by endophytic fungus Trichoderma harzianum, isolated by surface sterilization method from the leaf of the eucalyptus plant. The fungus was identified based on morphological characterization. Fungal metabolites were carried out by ethyl acetate solvent. The antibacterial activity was tested against Escherichia coli (ATCC 25922) and Staphylococcus aureus (NCTC 6571). Various carbon, nitrogen sources, pH, temperature, incubation period, and NaCl on the antibacterial metabolite production were studied. Bioactive metabolite production of T. harzianum exhibits a broad spectrum of in vitro antibacterial activity against two strains of bacteria. For the optimum production of bioactive metabolites, Dextrose and Glucose were found to be the best sources of carbon and the best sources of Nitrogen Yeast extract (YE) and (NH4)2SO. The maximum production of bioactive metabolites occurs at pH 7 and 25°C.; the NaCl showed a positive influence on bioactive metabolites.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


2020 ◽  
Vol 17 (9) ◽  
pp. 1102-1116
Author(s):  
Sudip Kumar Mandal ◽  
Utsab Debnath ◽  
Amresh Kumar ◽  
Sabu Thomas ◽  
Subhash Chandra Mandal ◽  
...  

Background and Introduction: Sesquiterpene lactones are a class of secondary metabolite that contains sesquiterpenoids and lactone ring as pharmacophore moiety. A large group of bioactive secondary metabolites such as phytopharmaceuticals belong to this category. From the Asteraceae family-based medicinal plants, more than 5,000 sesquiterpene lactones have been reported so far. Sesquiterpene lactone-based pharmacophore moieties hold promise for broad-spectrum biological activities against cancer, inflammation, parasitic, bacterial, fungal, viral infection and other functional disorders. Moreover, these moiety based phytocompounds have been highlighted with a new dimension in the natural drug discovery program worldwide after the 2015 Medicine Nobel Prize achieved by the Artemisinin researchers. Objective: These bitter substances often contain an α, β-unsaturated-γ-lactone as a major structural backbone, which in recent studies has been explored to be associated with anti-tumor, cytotoxic, and anti-inflammatory action. Recently, the use of sesquiterpene lactones as phytomedicine has been increased. This study will review the prospect of sesquiterpene lactones against inflammation and cancer. Methods: Hence, we emphasized on the different features of this moiety by incorporating its structural diversity on biological activities to explore structure-activity relationships (SAR) against inflammation and cancer. Results: How the dual mode of action such as anti-inflammatory and anti-cancer has been exhibitedby these phytopharmaceuticals will be forecasted in this study. Furthermore, the correlation of anti-inflammatory and anti-cancer activity executed by the sesquiterpene lactones for fruitful phytotherapy will also be revealed in the present review in the milieu of pharmacophore activity relation and pharmacodynamics study as well. Conclusion: So, these metabolites are paramount in phytopharmacological aspects. The present discussion on the future prospect of this moiety based on the reported literature could be a guide for anti-inflammatory and anti-cancer drug discovery programs for the upcoming researchers.


2017 ◽  
Vol 26 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Richard Bell ◽  
Braden Te Ao ◽  
Natasha Ironside ◽  
Adam Bartlett ◽  
John A. Windsor ◽  
...  

2004 ◽  
Vol 87 (6) ◽  
pp. 1383-1390 ◽  
Author(s):  
Philip R Goodwin

Abstract The levels (1–2%) and increasing severity of allergic responses to food in the adult population are well documented, as is the phenomenon of even higher (3–8%) and apparently increasing incidence in children, albeit that susceptibility decreases with age. Problematic foods include peanut, milk, eggs, tree nuts, and sesame, but the list is growing as awareness continues to rise. The amounts of such foods that can cause allergic reactions is difficult to gauge; however, the general consensus is that ingestion of low parts per million is sufficient to cause severe reactions in badly affected individuals. Symptoms can rapidly—within minutes—progress from minor discomfort to severe, even life-threatening anaphylactic shock in those worst affected. Given the combination of high incidence of atopy, potential severity of response, and apparently widespread instances of “hidden” allergens in the food supply, it is not surprising that this issue is increasingly subject to legislative and regulatory scrutiny. In order to assist in the control of allergen levels in foods to acceptable levels, analysts require a combination of test methods, each designed to produce accurate, timely, and cost-effective analytical information. Such information contributes significantly to Hazard Analysis Critical Control Point programs to determine food manufacturers’ risk and improves the accuracy of monitoring and surveillance by food industry, commercial, and enforcement laboratories. Analysis thereby facilitates improvements in compliance with labeling laws with concomitant reductions in risks to atopic consumers. This article describes a combination of analytical approaches to fulfill the various needs of these 3 analytical communities.


2021 ◽  
Author(s):  
Prapaporn Noparatayaporn ◽  
Montarat Thavorncharoensap ◽  
Usa Chaikledkaew ◽  
Bhavani Shankara Bagepally ◽  
Ammarin Thakkinstian

AbstractThis systematic review aimed to comprehensively synthesize cost-effectiveness evidences of bariatric surgery by pooling incremental net monetary benefits (INB). Twenty-eight full economic evaluation studies comparing bariatric surgery with usual care were identified from five databases. In high-income countries (HICs), bariatric surgery was cost-effective among mixed obesity group (i.e., obesity with/without diabetes) over a 10-year time horizon (pooled INB = $53,063.69; 95% CI $42,647.96, $63,479.43) and lifetime horizon (pooled INB = $101,897.96; 95% CI $79,390.93, $124,404.99). All studies conducted among obese with diabetes reported that bariatric surgery was cost-effective. Also, the pooled INB for obesity with diabetes group over lifetime horizon in HICs was $80,826.28 (95% CI $32,500.75, $129,151.81). Nevertheless, no evidence is available in low- and middle-income countries. Graphical abstract


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 533 ◽  
Author(s):  
Jiao-jiao Ji ◽  
Qi Feng ◽  
Hai-feng Sun ◽  
Xue-jun Zhang ◽  
Xiao-xiao Li ◽  
...  

Bioactive metabolites in Codonopsis pilosula are of particular interest as an immunostimulant. Methyl jasmonate (MeJA) plays an important role in the elicitation of metabolite biosynthesis. Here, we explored the response of metabolites to MeJA elicitation in C. pilosula adventitious roots and multiple shoots. The results showed that the biomass, polysaccharide, and lobetyolin content of adventitious roots exhibited the highest increases with 100 µmol·L−1 MeJA at the 16th day of subculture, whereas the atractylenolide III (a terpenoid) content increased extremely with 50 µmol·L−1 MeJA treatment at the 7th day of subculture. In addition, the biomass and lobetyolin content significantly increased at the 4th day after treatment. Similarly, the polysaccharide and lobetyolin content increased in multiple shoots. Further identification of different metabolites responding to MeJA by 1H-NMR showed an extremely significant increase of the lobetyolinin level, which coincided with lobetyolin. Accordingly, the precursor, fatty acids, showed a highly significant decrease in their levels. Furthermore, a significant increase in β-d-fructose-butanol glycoside was detected, which was accompanied by a decrease in the sucrose level. Accordingly, the enzyme genes responsible for terpenoid and carbohydrate biosynthesis, CpUGPase, and CpPMK, were up regulated. In conclusion, MeJA promoted culture growth and accelerated bioactive metabolite accumulation by regulating the expression of the metabolite biosynthesis related genes, CpUGPase and CpPMK in C. pilosula.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3092
Author(s):  
Rasha El-Shafei ◽  
Hala Hegazy ◽  
Bishnu Acharya

Non-conventional extraction of bioactive metabolites could provide sustainable alternative techniques to preserve the potency of antioxidants and antiviral compounds extracted from macro-algae. In this paper, we first reviewed the antioxidant and antiviral potential of the active metabolites that exist in the three known macro-algae classes; Phaeophyceae, Rhodophyceae, and Chlorophyceae, and a comparison between their activities is discussed. Secondly, a review of conventional and non-conventional extraction methods is undertaken. The review then focused on identifying the optimal extraction method of sulphated polysaccharide from macro-algae that exhibits both antiviral and antioxidant activity. The review finds that species belonging to the Phaeophyceae and Rhodophceae classes are primarily potent against herpes simplex virus, followed by human immunodeficiency virus and influenza virus. At the same time, species belonging to Chlorophyceae class are recorded by most of the scholars to have antiviral activity against herpes simplex virus 1. Additionally, all three macro-algae classes exhibit antioxidant activity, the potency of which is a factor of the molecular structure of the bioactive metabolite as well as the extraction method applied.


Kidney Cancer ◽  
2021 ◽  
pp. 1-14
Author(s):  
Elizabeth E. Ellis ◽  
Edward Messing

Background: Our goal is to review current literature regarding active surveillance (AS) of small renal masses (SRMs) and identify trends in survival outcomes, factors that predict the need for further intervention, and quality of life (QOL). Methods: We performed a comprehensive literature search in PubMed and EMBASE and identified 194 articles. A narrative summary was performed in lieu of a meta-analysis due to the heterogeneity of selected studies. Results: Seventeen articles were chosen to be featured in this review. Growth rate (GR) was not an accurate predictor of malignancy, although it was the characteristic most commonly used to trigger delayed intervention (DI). The mean 5-year overall survival (OS) of all studies was 73.6% ±1.7% for AS groups. The combined cancer specific survival (CSS) for AS is 97.1% ±0.6% , compared to 98.6% ±0.4% for the primary intervention (PI) groups, (p = 0.038). Conclusions: Short and intermediate-term data demonstrate that AS with the option for DI is a management approach whose efficacy (in terms of CSS) approaches that of PI at 5 years, is cost effective, and prevents overtreatment, especially in patients with significant comorbidities.


Sign in / Sign up

Export Citation Format

Share Document