Purification and Characterization of a Protease Inhibitor with Anticancer Potential from Bacillus endophyticus JUPR15

2019 ◽  
Vol 15 (1) ◽  
pp. 74-82 ◽  
Author(s):  
Prerana Venkatachalam ◽  
Varalakshmi Kilingar Nadumane

Introduction:Introduction: Protease Inhibitors (PIs) constitute a group of proteins widely distributed among all organisms and their main function includes their ability to inhibit the proteolytic activity. PIs represent an important role in the regulation of various cellular physiological and biological processes, including cell cycle, cell death, differentiation and immune response.Material and Methods:Hence, in our search for novel anticancer compounds, we isolated microorganisms from various environmental sources and screened them for the production of protease inhibitors. Promising isolates were further checked for their protease inhibitory activity by their ability to inhibit the activity of trypsin and chymotrypsin, which were measured spectrophotometrically.Results:The isolate identified as Bacillus endophyticus JUPR15 was found to be promising with higher inhibitory activity than the other isolates. The inhibitor was purified by cold acetone precipitation and column chromatography and further subjected to characterization studies by performing 12 % SDS-PAGE to determine the molecular weight and gelatin-PAGE assay to confirm its inhibitory activity.Conclusion:The isolate exhibited promising anticancer activity on in-vitro Hela and HepG2 cancer cell lines, showing its application potentials.

2012 ◽  
Vol 56 ◽  
pp. S329 ◽  
Author(s):  
J.A. Howe ◽  
D. Graham ◽  
P. McMonagle ◽  
S. Curry ◽  
R. Chase ◽  
...  

Author(s):  
Snigdha Pattnaik ◽  
Laxmidhar Moharana

Anti-inflammatory refers to group of medication that is utilized for curing pain and inflammation. Many synthetic products are used as anti-inflammatory agents but the effects caused by them is not satisfactory. Cordis obliqua is an anti-inflammatory herb that is enormously involved in pain reduction. The present paper aims to develop a topical gel formulation comprising herbs i.e. Cordis obliqua and curcumin with potent anti-inflammatory activity. The gel formulation was then subjected to characterization studies which involve pH, viscosity, excrudability, spreadability and in vitro analysis. pH of gel formulation was found to be 7.2±1.01 which is almost equivalent to the skin pH. In viscosity test, it was observed that viscosity of gel formulation was found to be effective. Moreover, spreadability co-efficient of the formulation satisfactory which indicates that sanitizer gel easily adhers on the skin and covers the bacteria residing on the skin, if any.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3289-3289
Author(s):  
Sailaja S. Vanama ◽  
Puja Sapra ◽  
Hans J. Hansen ◽  
Ivan D. Horak ◽  
David M. Goldenberg ◽  
...  

Abstract Ranpirnase (Rap), isolated from frog (Rana pipiens) oocytes, is a monomeric ribonuclease (MW 11800) that kills cells by degrading t-RNA upon internalization. Previous studies indicated that the cytotoxicity of Rap could be enhanced more than 10,000-fold when the enzyme is chemically conjugated to an internalizing antibody. Here we describe the construction and characterization of 2L-Rap-hLL1-γ4P, composed of two Rap molecules fused to hLL1, an internalizing anti-CD74 humanized monoclonal antibody. To reduce unwanted cytotoxicity, the IgG1 constant region of hLL1 was replaced with an IgG4 that contains a proline mutation in the hinge region. The Rap gene was inserted at the N-terminus of the light chain in the expression vector of hLL1 and expressed in NS0 mouse myeloma cells. The fusion protein was characterized by a variety of techniques, including SE-HPLC, SDS-PAGE, in vitro transcription translation (IVTT) assay using luciferase reporter system, and competition ELISA to measure the binding affinity for CD74. The in vitro potency was determined in non-Hodgkin’s lymphoma (Daudi) and multiple myeloma (MC/CAR) cell lines by MTS tetrazolium dye reduction assay. In vivo pharmacokinetics and biodistribution of radiolabeled 2L-Rap-hLL1- γ4P was compared to radiolabeled hLL1 mAb in naïve mice and in vivo therapeutic efficacy of 2L-Rap-hLL1- γ4P was determined in a xenograft model of Burkitt’s non-Hodgkin’s lymphoma (Daudi). Purified 2L-Rap-hLL1- γ4P was shown to be a single peak by SE-HPLC and its MW determined by MALDI-TOF to be 177,150, which is in agreement with the MW of one IgG (150,000) plus two Rap molecules (24,000). Reducing-SDS-PAGE of 2L-Rap-hLL1- γ4P revealed the presence of 3 bands, one corresponding to the heavy chain and the other two appearing to be derived from the Rap-fused light chains (38,526 and 36,700 by MS). Occurrence of the 2 light chains was shown to be due to glycosylation of Rap at the N69 residue. The binding affinity of 2L-Rap-hLL1- γ4P for CD74 was indistinguishable from that of hLL1. Both 2L-Rap-hLL1- γ4P and hLL1 bound to CD74 with subnanomolar affinity. The EC50 of RNase activity, as measured by the IVTT assay, was 300 pM for 2L-Rap-hLL1- γ4P and 30 pM for recombinant Rap (expressed in E. coil). In in vitro cytotoxicity assays, 2L-Rap-hLL1- γ4P was significantly cytotoxic against Daudi (EC50 280 pM) and the myeloma cell line, MC/CAR (EC50 50 nM). In contrast, free Rap or naked hLL1 did not demonstrate significant cytotoxicity at the concentrations tested. In vivo, the pharmacokinetic profile of 2L-Rap-hLL1- γ4P was almost identical to that of naked hLL1. Both 2L-Rap-hLL1- γ4P and hLL1 showed biphasic clearance from the circulation; the α and β half-life (t1/2) of 2L-Rap-hLL1- γ4P were 5 h and 119 h, respectively, and those of hLL1 were 4 h and 125 h, respectively. In tissue biodistribution studies, no significant difference was observed between 2L-Rap-hLL1- γ4P and hLL1 with regards to normal tissue uptake. Early efficacy results in the Daudi Burkitt’s non-Hodgkin’s lymphoma xenograft model demonstrate that treatment with a single dose of 2L-Rap-hLL1- γ4P as low as 1 μg/mouse significantly improves survival in comparison to untreated control mice (P<0.0001).


2005 ◽  
Vol 49 (4) ◽  
pp. 1381-1390 ◽  
Author(s):  
Victoria Chung ◽  
Anthony R. Carroll ◽  
Norman M. Gray ◽  
Nigel R. Parry ◽  
Pia A. Thommes ◽  
...  

ABSTRACT A recombinant vaccinia virus, expressing the NS3-to-NS5 region of the N clone of hepatitis C virus (HCV), was generated and utilized both in a gel-based assay and in an enzyme-linked immunosorbent assay (ELISA) to evaluate the pyrrolidine-5,5-trans-lactams, a series of inhibitors of the HCV NS3/4A protease. The absolute levels of processed, mature HCV nonstructural proteins in this system were found to decrease in the presence of the trans-lactams. Monitoring of this reduction enabled end points and 50% inhibitory concentrations to be calculated in order to rank the active compounds according to potency. These compounds had no effect on the transcription or translation of the NS3-5 polyprotein at concentrations shown to inhibit NS3/4A protease, and they were shown to be specific inhibitors of this protease. The ELISA, originally developed using the vaccinia virus expression system, was modified to utilize Huh-7 cells containing an HCV replicon. Results with this assay correlated well with those obtained with the recombinant vaccinia virus assays. These results demonstrate the utility of these assays for the characterization of NS3/4A protease inhibitors. In addition, inhibitors of other viral targets, such as polymerase and helicase, can be evaluated in the context of the replicon ELISA.


2017 ◽  
Vol 84 (2) ◽  
Author(s):  
Riza Arief PUTRANTO ◽  
. SISWANTO ◽  
Agustin Sri MULYATNI ◽  
Asmini BUDIANI ◽  
Radite TISTAMA

Latex, a milky white liquid, is the main product from rubber tree (Hevea brasiliensis). Latex is the cytoplasm of complex cellular networks named laticifers in which it contains many different components, including important proteins. Various types of enzymes carrying functions associated with plant defense against pathogen and wounding have been detected in latex in which one of these enzymes is protease inhibitor (PI). Plant protease inhibitor has tremendous potential as an antifungal agent which can be developed as biofungicide. In this work, protease inhibitors from B-serum (lutoid) of rubber tree latex were isolated and purified using Ion Exchange Chromatography (IEC) technique. Of the total 70 fractions of proteins extracted from the columns, only 26 fractions showed measurable levels of protein. The concentration of obtained putative protease inhibitors (three fractions of IEC) ranged from 0.007 to 0.022 mL/g B-serum. Inhibitory activity against four protease enzymes (subtilisin A, trypsin, α-chymotrypsin, and papain) showed the characteristics of Hevea putative protease inhibitors from B-serum as serine and/or cysteine protease inhibitors with more than 15% inhibitory activity of target protease. Based on SDS-PAGE visualization, the molecular weight of dominant protein considered as Hevea putative protease inhibitors was 21.5 kDa. In vitro bioassay test of antifungal activity for Hevea putative protease inhibitors showed reduced mycelium growth of Ganoderma boninense, Sclerotium sp., and Rigidosporus lignosus.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 215
Author(s):  
Jessica Lizbeth Sebastián-Nicolas ◽  
Elizabeth Contreras-López ◽  
Juan Ramírez-Godínez ◽  
Alma Elizabeth Cruz-Guerrero ◽  
Gabriela Mariana Rodríguez-Serrano ◽  
...  

Health benefits of probiotics and production of inhibitors of angiotensin converting enzyme (ACE) released during milk fermentation are well known. That is why in this investigation the proteolytic profile and ACE inhibitory capacity of peptide fractions from protein hydrolysis of milk during fermentation processes was analyzed. Milk fermentation was carried out inoculating 106 CFU of L. rhamnosus GG, S. thermophilus SY-102 and with both bacteria. The proteolytic profile was determined using: TNBS, SDS-PAGE and SEC-HPLC techniques. In vitro ACE inhibition capacity was measured. The pH of 4.5 was reached at 56 h when the milk was fermented with L. rhamnosus, at 12 h with S. thermophillus and at 41 h in the co-culture. Production of free amino groups corresponded with the profile of low molecular weight peptides observed by SDS-PAGE and SEC-HPLC. Co-culture fermentation showed both the highest concentration of low molecular weight peptides and the ACE inhibitory activity (>80%). Results indicated that the combination of lactic cultures could be useful in manufacture of fermented milk with an added value that goes beyond basic nutrition, such as the production of ACE-inhibitory peptides.


2017 ◽  
Vol 57 (2) ◽  
pp. 201-210 ◽  
Author(s):  
Sasikumar Arunachalam Palaniyandi ◽  
Karthiyaini Damodharan ◽  
Joo-Won Suh ◽  
Seung Hwan Yang

Author(s):  
Zakaria Barbeche ◽  
Hocine Laouer ◽  
Ramazan Erenler ◽  
Mohamed Hajji ◽  
Guido Flamini ◽  
...  

Background: Traditionally, The Algerian medicinal plant Elaeosilenum thapsioides have been used for many diseases. Objective: The present research work is aimed to explore the chemical and biological characterization of essential oil of, Elaeoselinum thapsioides (Desf.) Maire. Methods : The essential oils were obtained by hydrodistillation of different Elaeosilenum thapsioides (Apiaceae) aerial parts samples collected from two different regions (Mahouane and Megres) Setif, Eastern Algeria. The chemical characterization of the obtained essential oils was investigated in the present work for the first time by GC and GC-MS. Besides, they were evaluated for their in-vitro acetylcholinesterase (AChE) inhibitory activity whose enzyme hyperactivity is involved in Alzheimer’s disease. Using Ellman’s spectrophotometric method, additionally, their in-vitro antimicrobial activity was assessed by the disc diffusion method. Both activities were performed at various oil concentrations. Results: The GC/MS analysis of the aerial parts (leaves, stems, flowers, and seeds) essential oils of E. thapsioides revealed the presence of dominant compounds and others in small quantities, identifying 47 chemical molecules. Monoterpene hydrocarbons were the main components, ranging from 72.78 % to 99.13 %. Oxygenated monoterpenes and oxygenated sesquiterpenes ranged between (1.37 % -17.25 %) and (0.12 % -3.53 %) in leaves and stem essential oils. Sesquiterpene hydrocarbons were present in small to large quantities in the essential oils of both populations, with contents ranging from 0.69 % to 13.44 %. For the Isothiocyanates, their presence was recorded in leaves and stem essential oils from Mahouane and Merges with 9.73 % and 3.72 %, consecutively. Indeed, the essential oil of the Mahouane stem showed the highest AChE inhibitory activity among all the tested essential oils. Whereas the highest antibacterial activity was shown by the essential oil obtained from Megres leaves against Bacillus cereus ATCC 11778. Conclusion: The oils exhibited a moderate inhibitory activity in both activities.


1995 ◽  
Vol 305 (1) ◽  
pp. 87-92 ◽  
Author(s):  
K Stam ◽  
A A Stewart ◽  
G Y Qu ◽  
K K Iwata ◽  
D Fenyö ◽  
...  

Epithelial- and haematopoietic-cell growth-inhibitory activities have been identified in the conditioned medium of the human peripheral neuroepithelioma cell line A673. An A673-cell-derived growth-inhibitory activity was previously fractionated into two distinct components which inhibited the proliferation of human carcinoma and leukaemia cells in culture. One inhibitory activity was shown to comprise interleukin-1 alpha (IL-1 alpha). Here, we have purified to homogeneity a distinct activity which inhibited the growth of the epithelial cells in vitro. Using a combination of protein-sequence analysis and mass spectrometry, we demonstrated that biological activity can be assigned to a dimeric protein with a molecular mass of 25,576 (+/- 4) Da and an N-terminal sequence identical with that of transforming growth factor-beta 1 (TGF-beta 1). Further characterization of the growth inhibitor with TGF-beta-isoform-specific antibodies showed that > 90% of the bioactivity consists of TGF-beta 1 and not TGF-beta 2 or TGF-beta 3. Although A673 cells were growth-inhibited by exogenous TGF-beta 1, we showed that TGF-beta 1 in A673-cell-conditioned media was present in the latent, biologically inactive, form which did not act as an autocrine growth modulator of A673 cells in vitro.


2005 ◽  
Vol 389 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Lihong Zhou ◽  
Felicity Z. Watts

Nedd8 is a ubiquitin-like modifier that is attached to the cullin components of E3 ubiquitin ligases. More recently, p53 has also been shown to be Nedd8-modified. Nedd8 attachment occurs in a manner similar to that observed for other ubiquitin-like modifiers. In the present study, we report on the characterization of Nep1, a deneddylating enzyme in fission yeast (Schizosaccharomyces pombe). Unlike loss of ned8, deletion of the nep1 gene is not lethal, although nep1.d cells are heterogeneous in length, suggesting a defect in cell-cycle progression. Viability of nep1.d cells is dependent on a functional spindle checkpoint but not on the DNA integrity checkpoint. Deletion of a related gene (nep2), either alone or in combination with nep1.d, also has little effect on cell viability. We show that Nep1 can deneddylate the Pcu1, Pcu3 and Pcu4 cullins in vitro and that its activity is sensitive to N-ethylmaleimide, consistent with the idea that it is a member of the cysteine protease family. nep1.d cells accumulate Nedd8-modified proteins, although these do not correspond to modified forms of the cullins, suggesting that, although Nep1 can deneddylate cullins in vitro, this is not its main function in vivo. Nep1 can be co-precipitated with the signalosome subunit Csn5. Nep1 itself is present in a high-molecular-mass complex, but the presence of this complex is not dependent on the production of intact signalosomes. Our results suggest that, in vivo, Nep1 may be responsible for deneddylating proteins other than cullins.


Sign in / Sign up

Export Citation Format

Share Document