Gingiva-derived Mesenchymal Stem Cells and Their Potential Applications in Oral and Maxillofacial Diseases

2020 ◽  
Vol 15 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Xudong Gao ◽  
Zhengguo Cao

Background: Stem cells are undifferentiated cells with multilineage differentiation potential. They can be collected from bone marrow, fat, amniotic fluid, and teeth. Stem cell-based therapies have been widely used to treat multiple diseases, such as cardiac disease, and hematological disorders. The cells may also be beneficial for controlling the disease course and promoting tissue regeneration in oral and maxillofacial diseases. Oral-derived gingival mesenchymal stem cells are easy to access and the donor sites heal rapidly without a scar. Such characteristics demonstrate the beneficial role of GMSCs in oral and maxillofacial diseases. Objective: We summarize the features of GMSCs, including their self-renewal, multipotent differentiation, immunomodulation, and anti-inflammation properties. We also discuss their applications in oral and maxillofacial disease treatment and tissue regeneration. Conclusion: GMSCs are easily harvestable adult stem cells with outstanding proliferation, differentiation, and immunomodulation characteristics. A growing body of evidence indicates that GMSCs have strong potential use in accelerating wound healing and promoting the regeneration of bone defects, periodontium, oral neoplasms, salivary glands, peri-implantitis, and nerves. Moreover, alginate, polylactic acid and polycaprolactone can be used as biodegradable scaffolds for GMSC encapsulation. Various growth factors can be applied to the corresponding scaffolds to obtain the desired GMSC differentiation and phenotypes. Three-dimensional spheroid culture systems could optimize GMSC properties and improve the performance of the cells in tissue engineering. The immunomodulatory property of GMSCs in controlling oral and maxillofacial inflammation needs further research.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sevda Pouraghaei Sevari ◽  
Sahar Ansari ◽  
Alireza Moshaverinia

AbstractTissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Chad M. Teven ◽  
Xing Liu ◽  
Ning Hu ◽  
Ni Tang ◽  
Stephanie H. Kim ◽  
...  

Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming.


2018 ◽  
Vol 18 (3) ◽  
pp. 264 ◽  
Author(s):  
Roberto Berebichez-Fridman ◽  
Pablo R. Montero-Olvera

First discovered by Friedenstein in 1976, mesenchymal stem cells (MSCs) are adult stem cells found throughout the body that share a fixed set of characteristics. Discovered initially in the bone marrow, this cell source is considered the gold standard for clinical research, although various other sources—including adipose tissue, dental pulp, mobilised peripheral blood and birth-derived tissues—have since been identified. Although similar, MSCs derived from different sources possess distinct characteristics, advantages and disadvantages, including their differentiation potential and proliferation capacity, which influence their applicability. Hence, they may be used for specific clinical applications in the fields of regenerative medicine and tissue engineering. This review article summarises current knowledge regarding the various sources, characteristics and therapeutic applications of MSCs.Keywords: Mesenchymal Stem Cells; Adult Stem Cells; Regenerative Medicine; Cell Differentiation; Tissue Engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lin Liu ◽  
Kun Liu ◽  
Yanzhe Yan ◽  
Zhuangzhuang Chu ◽  
Yi Tang ◽  
...  

Objectives. Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). Materials and Methods. hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. Results. The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. Conclusions. Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.


2010 ◽  
Vol 22 (1) ◽  
pp. 192
Author(s):  
S. Li ◽  
T. Flisikowska ◽  
B. Kessler ◽  
T. Güngör ◽  
R. Kind ◽  
...  

Mesenchymal stem cells (MSC) are adult stem cells with fibroblast-like morphology, which can be easily isolated from bone marrow and expanded in culture. Mesenchymal stem cells are able to grow from a single cell into a cell clone, which makes them potentially useful for gene targeting. In our recent study we investigated the dynamics of epigenetic reprogramming following nuclear transfer (NT) with MSC and found that these cells can support development of cloned embryos as good as genetically identical fibroblasts (Brero et al. 2009 Cloning Stem Cells 11, 319-329). In the present study we tested whether live cloned rabbits can be produced from MSC. Nuclear donor cells were isolated from a 6-week-old transgenic Ali/Bas rabbit, expanded in culture, and assessed for their differentiation potential. Mesenchymal stem cells were transfected with a green fluorescent protein (GFP) reporter gene construct and stable cell clones were selected (GFP-MSC). The MSC and GFP-MSC were used for NT at passage 3 to 7 after serum starvation for 2 to 4 days. Nuclear transfer was performed essentially as described previously (Yang et al. 2007 Reproduction 133, 219-320). To assess the development to blastocyst, reconstructed embryos were cultured in B2 medium for 5 to 6 days, whereas for in vivo development embryos were cultured only overnight and then transferred into recipients at the 4- to 8-cell stage. In the MSC group, 844 oocytes were used, 793 (94%) of them fused, 698/786 (89%) cleaved, and 48/128 (38%) developed to blastocyst. After transfer of 483 cloned embryos into 13 recipients, 2 from 8 pregnant recipients gave birth to 10 (2.4%) rabbits, from which 2 and 1 survived for more than 7 days and 3 months, respectively. In the GFP-MSC group, 444 oocytes were used, 412 (93%) of them fused, 377/409 (92%) cleaved, and 97/178 (55%) developed to blastocyst. Transfer of 216 cloned embryos into 8 recipients resulted in 4 pregnancies. One recipient gave birth to 6 (3.7%) live and 2 stillborn rabbits, from which 2 and 1 rabbits survived for more than 3 days and 2 weeks, respectively. All cloned rabbits carried a GFP gene, and green fluorescence could be detected in the follicles of the skin under a fluorescence microscope (Zeiss Axiovert200, Carl Zeiss, Germany). Our study demonstrates that live cloned rabbits can be produced from genetically modified MSC, thus paving the way to generate gene targeted animals. This work is supported by Roche Diagnostic GmbH.


2020 ◽  
Vol 35 (6) ◽  
pp. 709-719 ◽  
Author(s):  
Yang Li ◽  
Xia Cao ◽  
Wenwen Deng ◽  
Qingtong Yu ◽  
Congyong Sun ◽  
...  

Ectomesenchymal stem cells (EMSCs) are typical adult stem cells obtained from the cranial neural crest. They have the potential to differentiate into various cell types, such as osseous cells, neurons and glial cells. Three-dimensional (3 D) printing is a novel method to construct biological structures by rapid prototyping. Previously, our group reported on the stemness and multi-lineage differentiation potential of EMSCs on gels. However, the exploration of EMSCs in 3 D printing and then evaluation of the growth and neuronal differentiation of EMSCs on extruded 3 D printable hybrid hydrogels has not been reported. Therefore, the current study explored the novel hybrid Sodium alginate-Matrigel (SA-MA) hydrogel extruded 3 D printing to design an in vitro scaffold to promote the differentiation and growth of EMSCs. In addition, the physical properties of the hydrogel were characterized and its drug-releasing property determined. Notably, the results showed that the construct exhibited a sustain-released effect of growth factor BDNF in accordance with the Higuchi equation. Moreover, the cell survival rate on the 3 D printed scaffold was 88.22 ± 1.13% with higher neuronal differentiation efficiency compared with 2 D culture. Thus, SA-MA’s ability to enhanced EMSCs neuronal differentiation offers a new biomaterial for neurons regeneration in the treatment of spinal cord injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chengzhu Zhao ◽  
Makoto Ikeya

Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology and isolated from the bone marrow via plastic adhesion. Their multipotency and immunoregulatory properties make MSCs possible therapeutic agents, and an increasing number of publications and clinical trials have highlighted their potential in regenerative medicine. However, the finite proliferative capacity of MSCs limits their scalability and global dissemination as a standardized therapeutic product. Furthermore, adult tissue provenance could constrain accessibility, impinge on cellular potency, and incur greater exposure to disease-causing pathogens based on the donor. These issues could be circumvented by the derivation of MSCs from pluripotent stem cells. In this paper, we review methods that induce and characterize MSCs derived from induced pluripotent stem cells (iPSCs) and introduce MSC applications to disease modeling, pathogenic mechanisms, and drug discovery. We also discuss the potential applications of MSCs in regenerative medicine including cell-based therapies and issues that should be overcome before iPSC-derived MSC therapy will be applied in the clinic.


Author(s):  
Yufeng Shang ◽  
Haotong Guan ◽  
Fuling Zhou

Umbilical cord mesenchymal stem cells (UC-MSCs) are a class of multifunctional stem cells isolated and cultured from umbilical cord. They possessed the characteristics of highly self-renewal, multi-directional differentiation potential and low immunogenicity. Its application in the field of tissue engineering and gene therapy has achieved a series of results. Recent studies have confirmed their characteristics of inhibiting tumor cell proliferation and migration to nest of cancer. The ability of UC-MSCs to support hematopoietic microenvironment and suppress immune system suggests that they can improve engraftment after hematopoietic stem cell transplantation, which shows great potential in treatment of hematologic diseases. This review will focus on the latest advances in biological characteristics and mechanism of UC-MSCs in treatment of hematological diseases.


2021 ◽  
Vol 23 (2) ◽  
pp. 81-86
Author(s):  
Ali Shojaeian ◽  
Ameneh Mehri-Ghahfarrokhi ◽  
Shima Rahmati-Dehkordi ◽  
Mehdi Banitalebi-Dehkordi

Background and aims: Infertility is one of the most common problems among couples. Generation of male germ cells from adult stem cells is a current promising priority of researchers. This study aimed to investigate the potential of human umbilical cord mesenchymal stem cells (hUMSCs) on the expression of male germ cell markers after isolating by this method. Methods: The hUMSCs was incubated with retinoic acid, testosterone, and conditioned medium (prepared from testicular cell cultures of 7-day-old mice) during 3 days. The bands were visualized and densitometry was accomplished using LI-COR Biosciences software. Results: The high expression levels of C-KIT, DAZL, PIWIL2, and DDX4 in mRNA and protein levels were observed in treated hUMSCs. Conclusion: Results of reverse transcription polymerase chain reaction (RT-PCR) and western blotting showed that method of isolation had no adverse effects on differentiation potential of hUMSCs.


Sign in / Sign up

Export Citation Format

Share Document