Determination of Dysregulated miRNA Expression Levels by qRT-PCR after the Application of Usnic Acid to Breast Cancer

2020 ◽  
Vol 20 (5) ◽  
pp. 548-558
Author(s):  
Ümmügülsüm Tanman ◽  
Sevcan Yangın ◽  
Demet Cansaran-Duman

Background and Purpose: Breast cancer still remains to be one of the most threatening cancer types in women. Recent studies have allowed scientists to better investigate the potential use of natural compounds in the treatment of breast cancers. Usnic acid is a secondary metabolite extracted from lichen species and has many biological activities. The response of microRNAs regulated by drug molecules may provide useful diagnostic and prognostic biomarkers, as well as potential therapeutics for breast cancers. Although the aberrant expression of microRNAs was observed after drug treatment, the regulatory mechanisms remain partially known. Micro RNAs (miRNAs) play an important role in gene regulation at the post-transcriptional level. Methods: In this study, we used quantitative Real-Time PCR (qRT-PCR) technology to demonstrate that usnic acid significantly changes the expression profile of miRNAs. Results: Eleven miRNAs were significantly and differentially expressed in breast cancer cells after treatment with usnic acid. Three miRNAs were up-regulated, while eight were down-regulated in usnic acid treated cells. Target prediction and GO analysis revealed many target genes and their related pathways that are potentially regulated by usnic acid regulated differentially expressed miRNAs. We found that usnic acid treatment caused significant changes in the expression of hsa-miR-5006-5p, hsa-miR-892c-3p, hsa-miR-4430, hsa-miR-5194, hsa-miR-3198, hsa-miR-3171, hsa-miR-933 and hsa-miR-185-3p in breast cancer cells. Conclusions: Usnic acid response miRNAs might play important regulatory roles in the tumorigenesis and development of breast cancer, and they could serve as prognostic predictors for breast cancer patients.

Author(s):  
Noha Gwili ◽  
Stacey J. Jones ◽  
Waleed Al Amri ◽  
Ian M. Carr ◽  
Sarah Harris ◽  
...  

Abstract Background Breast cancer stem cells (BCSCs) are drivers of therapy-resistance, therefore are responsible for poor survival. Molecular signatures of BCSCs from primary cancers remain undefined. Here, we identify the consistent transcriptome of primary BCSCs shared across breast cancer subtypes, and we examine the clinical relevance of ITGA7, one of the genes differentially expressed in BCSCs. Methods Primary BCSCs were assessed using immunohistochemistry and fluorescently labelled using Aldefluor (n = 17). Transcriptomes of fluorescently sorted BCSCs and matched non-stem cancer cells were determined using RNA-seq (n = 6). ITGA7 expression was examined in breast cancers using immunohistochemistry (n = 305), and its functional role was tested using siRNA in breast cancer cells. Results Proportions of BCSCs varied from 0 to 9.4%. 38 genes were significantly differentially expressed in BCSCs; genes were enriched for functions in vessel morphogenesis, motility, and metabolism. ITGA7 was found to be significantly downregulated in BCSCs, and low expression significantly correlated with reduced survival in patients treated with chemotherapy, and with chemoresistance in breast cancer cells in vitro. Conclusions This study is the first to define the molecular profile of BCSCs from a range of primary breast cancers. ITGA7 acts as a predictive marker for chemotherapy response, in accordance with its downregulation in BCSCs.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2138 ◽  
Author(s):  
Maryam Rezaei ◽  
Ana C. Martins Cavaco ◽  
Martin Stehling ◽  
Astrid Nottebaum ◽  
Katrin Brockhaus ◽  
...  

Cadherins mediate cohesive contacts between isotypic cells by homophilic interaction and prevent contact between heterotypic cells. Breast cancer cells neighboring endothelial cells (ECs) atypically express vascular endothelial (VE)-cadherin. To understand this EC-induced VE-cadherin expression in breast cancer cells, MCF7 and MDA-MB-231 cells expressing different endogenous cadherins were co-cultured with ECs and analyzed for VE-cadherin at the transcriptional level and by confocal microscopy, flow cytometry, and immunoblotting. After losing their endogenous cadherins and neo-expression of VE-cadherin, these cells integrated into an EC monolayer without compromising the barrier function instantly. However, they induced the death of nearby ECs. EC-derived extracellular vesicles (EVs) contained soluble and membrane-anchored forms of VE-cadherin. Only the latter was re-utilized by the cancer cells. In a reporter gene assay, EC-adjacent cancer cells also showed a juxtacrine but no paracrine activation of the endogenous VE-cadherin gene. This cadherin switch enabled intimate contact between cancer and endothelial cells in a chicken chorioallantoic membrane tumor model showing vasculogenic mimicry (VM). This EV-mediated, EC-induced cadherin switch in breast cancer cells and the neo-expression of VE-cadherin mechanistically explain the mutual communication in the tumor microenvironment. Hence, it may be a target to tackle VM, which is often found in breast cancers of poor prognosis.


2019 ◽  
Vol 40 (8) ◽  
pp. 1010-1020 ◽  
Author(s):  
Jason Harquail ◽  
Nicolas LeBlanc ◽  
Rodney J Ouellette ◽  
Gilles A Robichaud

AbstractRecent studies have enabled the identification of important factors regulating cancer progression, such as paired box gene 5 (Pax-5). This transcription factor has consistently been associated to B-cell cancer lesions and more recently solid tumors including breast carcinoma. Although Pax-5 downstream activity is relatively well characterized, aberrant Pax-5 expression in a cancer-specific context is poorly understood. To investigate the regulation of Pax-5 expression, we turned to micro RNAs (miRNAs), small non-coding RNA molecules that regulate key biological processes. Extensive studies show that miRNA deregulation is prevalent in cancer lesions. In this study, we aim to elucidate a causal link between differentially expressed miRNAs in cancer cells and their putative targeting of Pax-5-dependent cancer processes. Bioinformatic prediction tools indicate that miRNAs 484 and 210 are aberrantly expressed in breast cancer and predicted to target Pax-5 messenger RNA (mRNA). Through conditional modulation of these miRNAs in breast cancer cells, we demonstrate that miRNAs 484 and 210 inhibit Pax-5 expression and regulate Pax-5-associated cancer processes. In validation, we show that these effects are probably caused by direct miRNA/mRNA interaction, which are reversible by Pax-5 recombinant expression. Interestingly, miRNAs 484 and 210, which are both overexpressed in clinical tumor samples, are also modulated during epithelial–mesenchymal transitioning and hypoxia that correlate inversely to Pax-5 expression. This is the first study demonstrating the regulation of Pax-5 expression and function by non-coding RNAs. These findings will help us better understand Pax-5 aberrant expression within cancer cells, creating the possibility for more efficient diagnosis and treatments for cancer patients.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Lingling Wang ◽  
Jiashen Sun ◽  
Yueyuan Yin ◽  
Yanan Sun ◽  
Jinyi Ma ◽  
...  

AbstractTo support cellular homeostasis and mitigate chemotherapeutic stress, cancer cells must gain a series of adaptive intracellular processes. Here we identify that NUPR1, a tamoxifen (Tam)-induced transcriptional coregulator, is necessary for the maintenance of Tam resistance through physical interaction with ESR1 in breast cancers. Mechanistically, NUPR1 binds to the promoter regions of several genes involved in autophagy process and drug resistance such as BECN1, GREB1, RAB31, PGR, CYP1B1, and regulates their transcription. In Tam-resistant ESR1 breast cancer cells, NUPR1 depletion results in premature senescence in vitro and tumor suppression in vivo. Moreover, enforced-autophagic flux augments cytoplasmic vacuolization in NUPR1-depleted Tam resistant cells, which facilitates the transition from autophagic survival to premature senescence. Collectively, these findings suggest a critical role for NUPR1 as a transcriptional coregulator in enabling endocrine persistence of breast cancers, thus providing a vulnerable diagnostic and/or therapeutic target for endocrine resistance.


Open Medicine ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Lei Wang ◽  
Ming Li ◽  
Yongxin Zhou ◽  
Yu Zhao

AbstractAberrantly expressed microRNAs have been implicated in lots of cancers. Reduced amounts of let-7g have been found in breast cancer tissues. The function of let-7g in bone metastasis of breast cancer remains poorly understood. This study is to explore the significance of let-7g and its novel target gene in bone metastasis of breast cancer.The expression of let-7g or forkhead box C2 (FOXC2) was measured in human clinical breast cancer tissues with bone metastasis by using quantitative real-time Polymerase Chain Reaction (qRT-PCR). After transfection with let-7g or anti-let-7g in breast cancer cell linesMDA-MB-231or SK-BR3, qRT-PCR and Western blot were done to test the levels of let-7g and FOXC2. The effect of anti-let-7g and/ or FOXC2 RNA interference (RNAi) on cell migration in breast cancer cells was evaluated by using wound healing assay.Clinically, qRT-PCR showed that FOXC2 levels were higher in breast cancer tissues with bone metastasis than those in their noncancerous counterparts. Let-7g was showed to be negatively correlated with FOXC2 in human breast cancer samples with bone metastasis. We found that enforced expression of let-7g reduced levels of FOXC2 protein by using Western blot in MDA-MB-231 cells. Conversely, anti-let-7g enhanced levels of FOXC2 in SK-BR3 cells. In terms of function, anti-let-7g accelerated migration of SK-BR3 cells. Interestingly, FOXC2 RNAi abrogated anti-let-7g-mediated migration in breast cancer cells. Thus, we conclude that let-7g suppresses cell migration through targeting FOXC2 in breast cancer. Our finding provides a new perspective for understanding the mechanism of bone metastasis in breast cancer.


Endocrinology ◽  
2006 ◽  
Vol 147 (9) ◽  
pp. 4048-4055 ◽  
Author(s):  
William B. Kinlaw ◽  
Jennifer L. Quinn ◽  
Wendy A. Wells ◽  
Christopher Roser-Jones ◽  
Joel T. Moncur

Spot 14 (S14) is a nuclear protein that communicates the status of dietary fuels and fuel-related hormones to genes required for long-chain fatty acid synthesis. In mammary gland, S14 is important for both epithelial proliferation and milk fat production. The S14 gene is amplified in some breast cancers and is strongly expressed in most. High expression of S14 in primary invasive breast cancer is conspicuously predictive of recurrence. S14 mediates the induction of lipogenesis by progestin in breast cancer cells and accelerates their growth. Conversely, S14 knockdown impairs de novo lipid synthesis and causes apoptosis. We found that breast cancer cells do not express lipoprotein lipase (LPL) and hypothesize that they do not have access to circulating lipids unless the local environment supplies it. This may explain why primary breast cancers with low S14 do not survive transit from the LPL-rich mammary fat pad to areas devoid of LPL, such as lymph nodes, and thus do not appear as distant metastases. Thus, S14 is a marker for aggressive breast cancer and a potential target as well. Future effort will center on validation of S14 as a therapeutic target and producing antagonists of its action.


2021 ◽  
Vol 12 (10) ◽  
Author(s):  
Yike Wang ◽  
Lifeng Dong ◽  
Fang Wan ◽  
Fangfang Chen ◽  
Dianlei Liu ◽  
...  

AbstractThis study explored the role of MTDH in regulating the sensitivity of breast cancer cell lines to gemcitabine (Gem) and the potential miRNAs targeting MTDH. The expression of MTDH in cancer tissues and cells was detected by immunohistochemical staining or qRT-PCR. The target genes for MTDH were predicted by bioinformatics and further confirmed by dual-luciferase reporter assay and qRT-PCR. Cancer cells were transfected with siMTDH, MTDH, miR-9-3p inhibitor, or mimics and treated by Gem, then CCK-8, colony formation assay, tube formation assay, flow cytometry, wound healing assay, and Transwell were performed to explore the effects of MTDH, miR-9-3p, and Gem on cancer cell growth, apoptosis, migration, and invasion. Expressions of VEGF, p53, cleaved caspase-3, MMP-2, MMP-9, E-Cadherin, N-Cadherin, and Vimentin were determined by Western blot. MTDH was high-expressed in cancer tissues and cells, and the cells with high-expressed MTDH were less sensitive to Gem, while silencing MTDH expression significantly promoted the effect of Gem on inducing apoptosis, inhibiting cell migration, invasion, and growth, and on regulating protein expressions of cancer cells. Moreover, miR-9-3p had a targeted binding relationship with MTDH, and overexpressed miR-9-3p greatly promoted the toxic effects of Gem on cancer cells and expressions of apoptosis-related proteins, whereas overexpressed MTDH partially reversed such effects of overexpressed miR-9-3p. The study proved that miR-9-3p regulates biological functions, drug resistance, and the growth of Gem-treated breast cancer cells through targeting MTDH.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e13002-e13002
Author(s):  
Yinghuan Cen ◽  
Chang Gong ◽  
Jun Li ◽  
Gehao Liang ◽  
Zihao Liu ◽  
...  

e13002 Background: We previously demonstrated that BRMS1L (breast cancer metastasis suppressor 1 like) suppresses breast cancer metastasis through HDAC1 recruitment and histone H3K9 deacetylation at the promoter of FZD10, a receptor for Wnt signaling. It is still unclear whether BRMS1L regulates organ-specific metastases, such as bone metastasis, the most prevalent metastatic site of breast cancer. Methods: Examination of the expression of BRMS1L in primary tumors, bone metastatic and other metastatic tissues from breast cancer patients was implemented using qRT-PCR and immunohistochemistry staining. To investigate the mechanism by which BRMS1L drives breast cancer bone metastasis, we tested the mRNA expression by qRT-PCR of a set of potential bone related genes (BRGs) based on PubMed database in MDA-MB-231 cells over expressing BRMS1L and MCF-7 cells knocking-down BRMS1L, and detected the expression of CXCR4 in these established cells by western blot. Transwell assays were performed to assess the migration abilities of breast cancer cells towards osteoblasts. ChIP (Chromatin Immuno-Precipitation) were employed to test the interaction between BRMS1L and CXCR4. Results: At both mRNA and protein levels, the expression of BRMS1L was significantly lower in bone metastatic sites than that in primary cancer tissues and other metastatic sites of breast cancer patients. CXCR4 was screened out in a set of BRGs and negatively correlated with the expression of BRMS1L in breast cancer cell lines. BRMS1L inhibited the migration of breast cancer cells towards osteoblasts through CXCL12/CXCR4 axis. In the presence of TSA treatment, breast cancer cell lines showed an increased expression of CXCR4 in a TSA concentration-dependent manner. In addition, ChIP assays verified that BRMS1L directly bound to the promoter region of CXCR4 and inhibited its transcription through promoter histone deacetylation. Conclusions: BRMS1L mediates the migration abilities of breast cancer cells to bone microenvironment via targeting CXCR4 and contributes to bone metastasis of breast cancer cells. Thus, BRMS1L may be a potential biomarker for predicting bone metastasis in breast cancer.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Matthew Tegowski ◽  
Cheng Fan ◽  
Albert S. Baldwin

AbstractSeveral recent publications demonstrated that DRD2-targeting antipsychotics such as thioridazine induce proliferation arrest and apoptosis in diverse cancer cell types including those derived from brain, lung, colon, and breast. While most studies show that 10–20 µM thioridazine leads to reduced proliferation or increased apoptosis, here we show that lower doses of thioridazine (1–2 µM) target the self-renewal of basal-like breast cancer cells, but not breast cancer cells of other subtypes. We also show that all breast cancer cell lines tested express DRD2 mRNA and protein, regardless of thioridazine sensitivity. Further, DRD2 stimulation with quinpirole, a DRD2 agonist, promotes self-renewal, even in cell lines in which thioridazine does not inhibit self-renewal. This suggests that DRD2 is capable of promoting self-renewal in these cell lines, but that it is not active. Further, we show that dopamine can be detected in human and mouse breast tumor samples. This observation suggests that dopamine receptors may be activated in breast cancers, and is the first time to our knowledge that dopamine has been directly detected in human breast tumors, which could inform future investigation into DRD2 as a therapeutic target for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document