scholarly journals Synthesis and Evaluation of 2-Naphthaleno trans-Stilbenes and Cyanostilbenes as Anticancer Agents

2018 ◽  
Vol 18 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Nikhil R. Madadi ◽  
Narsimha R. Penthala ◽  
Amit Ketkar ◽  
Robert L. Eoff ◽  
Vicenta Trujullo-Alonso ◽  
...  

Background: Naphthalene is a good structural replacement for the isovanillin moiety (i.e. the 3- hydroxy-4-methoxyphenyl unit) in the combretastatin A-4 molecule, a natural product structurally related to resveratrol, which consistently led to the generation of highly cytotoxic naphthalene analogues when combined with a 3,4,5-trimethoxyphenyl or related aromatic system. Also, the naphthalene ring system is present in many current drug molecules that are utilized for anti-tumor, anti-arrhythmia and antioxidant therapy. Objective: In our continuing quest to improve the potencies of naturally occurring anti-cancer molecules through chemical modification, we have now synthesized a small library of 2-naphthaleno trans- stilbenes and cyanostilbenes that are structurally related to both resveratrol and DMU-212, and have evaluated these novel analogs against a panel of 54 human tumor cell lines. Method: A series of 2-naphthaleno-containing trans-stilbenes 3a-3h (Scheme 1) were synthesized by Wittig reaction of a variety of aromatic substituted benzyl-triphenylphosphonium bromide reactants with 2- naphthaldehyde using n-BuLi as a base in THF. A second series of 2-naphthaleno trans-cyanostilbenes analogs 5a-5h was synthesized by reaction of 2-naphthaldehyde (2; 1 mmol) with an appropriately substituted 2- phenylacrylonitrile 4a-4h; 1 mmol) in 5% sodium methoxide/methanol. The reaction mixture was stirred at room temperature for 2-3 hours and the reaction allowed to go to completion (TLC monitoring), during which time the desired product precipitated out of the solution as a solid. The resulting precipitate was filtered off, washed with water and dried to yield the desired compound in yields ranging from 70-95% (Scheme 2). Results: The percentage growth inhibition of 54 human cancer cell lines in a primary NCI screen after exposure to compounds 3a, 3d, 5b and 5c was carried out. The results showed that only compounds 5b and 5c met the criteria for subsequent testing to determine growth inhibition values (GI50) in dose-response studies. At 10-5 M concentration, compounds 5b and 5c exhibited cytotoxic activity against leukemia cell lines HL-60(TB) and SR, lung cancer cell line NCI-H522, colon cancer cell lines COLO 205 and HCT-116, CNS-cancer cell line SF-539, melanoma cell line MDA-MB-435, and breast cancer cell line BT-549. The naphthalene trans-stilbene analogue 3a, exhibited significant growth inhibition against only one cell line, melanoma cell line MDA-MB-435 (96 % growth inhibition). Compound 3d was inactive in the 10-5 M single dose screen. Conclusion: We have synthesized a small set of novel 2-naphthaleno stilbenes and cyanostilbenes and evaluated several of these compounds for their anticancer properties against a panel of 54 human tumor cell lines. The most active analogs, 5b and 5c, showed significantly improved growth inhibition against the human cancer cells in the NCI panel when compared to DMU-212. Of these compounds, analog 5c was found to be the most potent anticancer agent and exhibited significant growth inhibitory effects against COLO 205, CNS SF 539 and melanoma SK-MEL 5 and MDA-MB-435 cell lines with GI50 values ≤ 25 nM. Analog 5b also exhibited GI50 values in the range 25-41 nM against CNS SF 295 and melanoma MDA-MB-435 and UACC-62 cell lines. Compounds 5b and 5c were also cytotoxic towards the MV4-11 leukemia cell line with LD50 value of 450 nM and 200 nM, respectively, and demonstrated >50% inhibition of tubulin polymerization at concentrations below their LD50 values in these cells. In silico docking studies suggest that compounds 5b and 5c bind favorably at the colchicine- binding pocket of the tubulin dimer, indicating that both 5b and 5c may inhibit tubulin polymerization through a mechanism similar to that exhibited by colchicine. Derivative 5c demonstrated more favorable binding based on the docking score and buried surface area, as compared to compound 5b, in agreement with the higher observed potency of 5c against a broader range of tumor cell lines. Based on these results, analog 5c is considered to be a lead compound for further optimization as a clinical candidate for treating a variety of cancers.

Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 92
Author(s):  
Bashir Lawal ◽  
Yen-Lin Liu ◽  
Ntlotlang Mokgautsi ◽  
Harshita Khedkar ◽  
Maryam Rachmawati Sumitra ◽  
...  

Signal transducer and activator of transcription 3 (STAT3) is a transcriptional regulator of a number of biological processes including cell differentiation, proliferation, survival, and angiogenesis, while cyclin-dependent kinases (CDKs) are a critical regulator of cell cycle progression. These proteins appear to play central roles in angiogenesis and cell survival and are widely implicated in tumor progression. In this study, we used the well-characterized US National Cancer Institute 60 (NCI60) human tumor cell lines to screen the in vitro anti-cancer activities of our novel small molecule derivatives (NSC765690 and NSC765599) of salicylanilide. Furthermore, we used the DTP-COMPARE algorithm and in silico drug target prediction to identify the potential molecular targets, and finally, we used molecular docking to assess the interaction between the compounds and prominent potential targets. We found that NSC765690 and NSC765599 exhibited an anti-proliferative effect against the 60 panels of NCI human cancer cell lines, and dose-dependent cytotoxic preference for NSCLC, melanoma, renal, and breast cancer cell lines. Protein–ligand interactions studies revealed that NSC765690 and NSC765599 were favored ligands for STAT3/CDK2/4/6. Moreover, cyclization of the salicylanilide core scaffold of NSC765690 mediated its higher anti-cancer activities and had greater potential to interact with STAT3/CDK2/4/6 than did NSC765599 with an open-ring structure. NSC765690 and NSC765599 met the required safety and criteria of a good drug candidate, and are thus worthy of further in-vitro and in-vivo investigations in tumor-bearing mice to assess their full therapeutic efficacy.


2011 ◽  
Vol 66 (3-4) ◽  
pp. 143-148 ◽  
Author(s):  
Hossam M. Abdallah ◽  
Shahira M. Ezzat

The aerial parts of Pituranthos tortuosus (Desf.) Benth and Hook (Apiaceae), growing wild in Egypt, yielded 0.8%, 0.6%, and 1.5% (v/w) of essential oil when prepared by hydrodistillation (HD), simultaneous hydrodistillation-solvent (n-pentane) extraction (Lickens- Nickerson, DE), and conventional volatile solvent extraction (preparation of the “absolute”, SE), respectively. GC-MS analysis showed that the major components in the HD sample were β-myrcene (18.81%), sabinene (18.49%), trans-iso-elemicin (12.90%), and terpinen- 4-ol (8.09%); those predominent in the DE sample were terpinen-4-ol (29.65%), sabinene (7.38%), γ-terpinene (7.27%), and β-myrcene (5.53%); while the prominent ones in the SE sample were terpinen-4-ol (15.40%), dill apiol (7.90%), and allo-ocimene (4E,6Z) (6.00%). The oil prepared in each case was tested for its cytotoxic activity on three human cancer cell lines, i.e. liver cancer cell line (HEPG2), colon cancer cell line (HCT116), and breast cancer cell line (MCF7). The DE sample showed the most potent activity against the three human cancer cell lines (with IC50 values of 1.67, 1.34, and 3.38 μg/ml against the liver, colon, and breast cancer cell lines, respectively). Terpinen-4-ol, sabinene, γ-terpinene, and β-myrcene were isolated from the DE sample and subjected to a similar evaluation of cytotoxic potency; signifi cant activity was observed


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 633
Author(s):  
Hanwen Zhu ◽  
Boting Ning

Background: MicroRNAs are essential gene expression regulators and play important roles in various biological processes, such as cancer. They have shown great translational promise as either diagnostic biomarkers or therapeutic targets. While the similarities between transcriptomic profiles from The Cancer Genome Atlas and the Cancer Cell Line Encyclopedia have been thoroughly studied before, less is known on the microRNA side. This project aims to provide critical biological knowledge on the extent of consensus microRNA expression and regulation between cell line models and primary human tumors.  Method: First, we examined the similarity of miRNA expression profiles between CCLE cell lines and TCGA tumor samples for each cancer type. Next, we compared the expression of miRNAs associating the hallmarks of cancer pathways. Finally, we constructed miRNA-mRNA regulatory network for each cancer type and evaluated whether the regulatory role of each miRNA is conserved between cell lines and tumor samples.   Results: Our results indicate that, similar to gene expression, how well cancer cell line microRNA expression would capture the transcriptomic profile of human cancer tissues is greatly affected by the tumor type and purity. The cell-type composition for a cancer type also affects how accurately cancer cell lines could reflect the miRNA expression in tumor tissues. Furthermore, through network analysis, we show that certain microRNAs, not all, regulate the same set of target genes in both the cell line and human cancer tissues.  Conclusions: Through systematically comparing the miRNA expression profile and the regulatory network, our study highlights the biological differences between cell line and tumor samples and provides resources for future miRNA and cancer studies.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 4005
Author(s):  
Simayijiang Aimaiti ◽  
Yohei Saito ◽  
Shuichi Fukuyoshi ◽  
Masuo Goto ◽  
Katsunori Miyake ◽  
...  

Seven new butanolides, peltanolides A–G (1–7), and two lignan glucosides, peltasides A (8) and B (9), along with eleven known compounds, 10–20, were isolated from a crude CH3OH/CH2Cl2 (1:1) extract of the fruit of Hernandia nymphaeifolia (Hernandiaceae). The structures of 1–9 were characterized by extensive 1D and 2D NMR spectroscopic and HRMS analysis. The absolute configurations of newly isolated compounds 1–9 were determined from data obtained by optical rotation and electronic circular dichroism (ECD) exciton chirality methods. Butanolides and lignan glucosides have not been isolated previously from this genus. Several isolated compounds were evaluated for antiproliferative activity against human tumor cell lines. Lignans 15 and 16 were slightly active against chemosensitive tumor cell lines A549 and MCF-7, respectively. Furthermore, both compounds displayed significant activity (IC50 = 5 µM) against a P-glycoprotein overexpressing multidrug-resistant tumor cell line (KB-VIN) but were less active against its parent chemosensitive cell line (KB).


2004 ◽  
Vol 50 (5) ◽  
pp. 375-381 ◽  
Author(s):  
A Abdi-Ali ◽  
E A Worobec ◽  
A Deezagi ◽  
F Malekzadeh

Pyocin typing of 82 Pseudomonas aeruginosa strains, collected from different Iranian clinical sources, revealed that one isolate, P. aeruginosa 42A, produced pyocin S2, a protease-sensitive bacteriocin. Pyocin S2 production was induced by mitomycin C (2 µg/mL) in the pyocin S2 producer P. aeruginosa 42A. Pyocin S2 was purified using ion exchange chromatography with CM-Sepharose CL-6B and sodium phosphate buffer (pH 8) from an 80% ammonium sulfate precipitate of whole-cell lysates. Pyocin activity of the fractions was detected using the Govan spot testing method. The purity of the active fraction was confirmed by SDS–PAGE, where a single band with a molecular mass of 74 kDa was detected. Cytotoxic effects of purified pyocin S2 and partially purified pyocin from P. aeruginosa 42A on the human tumor cell lines HepG2 and Im9 and the normal human cell line HFFF (Human Foetal Foreskin Fibroblast) were studied by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results demonstrated that partially purified pyocin and pyocin S2 exhibited substantial inhibitory effects on the growth of the tumor cell lines HepG2 and Im9, while no inhibitory effects were observed on the normal cell line HFFF. Pure lipopolysaccharide was used as a control and was found to have no inhibitory effect on any of the cell lines tested.Key words: Pseudomonas aeruginosa, pyocin, cytotoxicity, MTT assay.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3922
Author(s):  
Yadav ◽  
Sharma ◽  
Kaushik ◽  
Kumar ◽  
Jha ◽  
...  

The synthesis of novel pyrazolylnucleosides 3a–e, 4a–e, 5a–e, and 6a–e are described. The structures of the regioisomers were elucidated by using extensive NMR studies. The pyrazolylnucleosides 5a–e and 6a–e were screened for anticancer activities on sixty human tumor cell lines. The compound 6e showed good activity against 39 cancer cell lines. In particular, it showed significant inhibition against the lung cancer cell line Hop-92 (GI50 9.3 µM) and breast cancer cell line HS 578T (GI50 3.0 µM).


2012 ◽  
Vol 10 (5) ◽  
pp. 1464-1474 ◽  
Author(s):  
Radostina Alexandrova ◽  
Tanya Zhivkova ◽  
Marin Alexandrov ◽  
Georgi Miloshev ◽  
Milena Georgieva ◽  
...  

AbstractThe anticancer activity of monensic acid (MonH) and its biometal(II) complexes [M(Mon)2(H2O)2](M = Mg, Ca, Mn, Co, Ni, Zn) was evaluated against cultured human permanent cell lines established from glioblastoma multiforme (8MGBA) and cancers of the lung (A549), breast (MCF-7), uterine cervix (HeLa) and liver (HepG2). The viability and proliferation of the non-tumor human embryonic cell line Lep3 was also tested. The investigations were carried out using a thiazolyl blue tetrazolium bromide test, neutral red uptake cytotoxicity assay, crystal violet staining, colony forming method and double staining with acridin orange and propidium iodide. The results obtained reveal that the compounds applied at concentrations of 0.5–25 µg mL−1 for 24–72 h decrease the viability and proliferation of the treated cells in a time- and concentration-dependent manner. The metal(II) complexes studied (especially those of Co(II), Ni(II) and Zn(II)) have been found to express stronger cytotoxic and cytostatic activities than the non-coordinated monensic acid. The non-tumor human cell line showed strong chemosensitivity towards compounds tested comparable to that of cultured human tumor cell lines.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 972
Author(s):  
Gulam Mohmad Rather ◽  
Michael Anyanwu ◽  
Tamara Minko ◽  
Olga Garbuzenko ◽  
Zoltan Szekely ◽  
...  

Background: We tested the antitumor effects of a modified E2F peptide substituting D-Arg for L-Arg, conjugated to penetratin (PEP) against solid tumor cell lines and the CCRF-leukemia cell line, alone and in combination with pemetrexed or with cisplatin. For in-vivo studies, the peptide was encapsulated in PEGylated liposomes (PL-PEP) to increase half-life and stability. Methods: Prostate cancer (DU145 and PC3), breast cancer (MCF7, MDA-MB-468, and 4T1), lymphoma (CCRF-CEM), and non-small cell lung cancer (NSCLC) cell lines (H2009, H441, H1975, and H2228) were treated with D-Arg PEP in combination with cisplatin or pemetrexed. Western blot analysis was performed on the NSCLC for E2F-1, pRb, thymidylate synthase, and thymidine kinase. The H2009 cell line was selected for an in-vivo study. Results: When the PEP was combined with cisplatin and tested against solid tumor cell lines and the CCRF-CEM leukemia cell line, there was a modest synergistic effect. A marked synergistic effect was seen when the combination of pemetrexed and the PEP was tested against the adenocarcinoma lung cancer cell lines. The addition of the PEP to pemetrexed enhanced the antitumor effects of pemetrexed in a xenograft of the H2009 in mice. Conclusions: The D-Arg PEP in combination with cisplatin caused synergistic cell kill against prostate, breast, lung cancers, and the CCRF-CEM cell line. Marked synergy resulted when the D-Arg PEP was used in combination with pemetrexed against the lung adenocarcinoma cell lines. A xenograft study using the PL-PEP in combination with pemetrexed showed enhanced anti-tumor effects compared to each drug alone.


Sign in / Sign up

Export Citation Format

Share Document