scholarly journals Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences

Author(s):  
Rudrashish Haldar ◽  
Devendra Gupta ◽  
Shweta Chitranshi ◽  
Manish Kumar Singh ◽  
Sumit Sachan

Artificial blood is an innovative concept of transfusion medicine where specifically designed compounds perform the task of transport and delivery of oxygen in the body to replace this function of allogenic human blood transfusion. Several molecules have been developed in the past few decades to achieve this objective and continous refinements are being continuously made in the quest of the ideal blood substitute. Currently, available technology manufactures artificial blood from haemoglobin obtained from outdated human/bovine blood (Haemoglobin Based Oxygen Carriers) or utilizing Perfluorocarbons. These synthetic blood substitutes are advantageous in that they do not require compatibility testing, are free from blood borne infections, have prolonged shelf life and do not require refrigeration. Artificial blood is projected to have a significant impact on the development of medical care in the future. It can complement the current blood products for transfusion and create a stable supply of safe and effective products. It is likely to reduce the requirements of blood transfusions drastically especially in settings of trauma and surgery thereby reducing the reliance on banked donated blood.

Author(s):  
Krishna Veni R ◽  
Brindha Devi P ◽  
Ivo Romauld S

Blood is a liquid tissue, in which abundant chemical factors and millions of different cells are dissolved. It is one of the most demanding sources in clinical and medical aspects. The issues and cost of human blood collection and storage directed this procedure toward the use of alternative blood. Thus, came an invention of artificial blood and blood substitutes. These alternative blood or blood substitute is a substance which is made to play as a substitute of erythrocytes. Thus, the main objective is to replace the normal human blood with artificial blood substitutes in the place of blood transfusion during surgeries and organ transfusion. Two major and focused blood substitutes in pharmaceutical aspects are perfluorocarbons and hemoglobin-based oxygen carriers (HBOC’s). Among these HBOCs vaguely resemble normal human blood. These blood substitutes are to allow flow through the blood stream to carry the oxygen and supply it to heart and other parts of the blood. They are used to fill the lost fluid volume. They are also called as plastic blood with iron atom as the base. They are found to serve as a good oxygen carrier. The results showed by these products are discussed, and they proved that they can act as a blood substitute and also they can reach the human tissue easier than erythrocytes and can control oxygen directly. However, these artificial blood products are being processed in research laboratories for good outcome. Their important functions are oxygen carrying capacity and to replace the lost blood volume in the human body. Their special features are survivability over a wider range of temperatures, eliminating cross matching, cost efficient, pathogen free, long shelf life, minimal side effects. Thus, artificial blood products are really a good alternative source which we need for replacing normal human blood.


2007 ◽  
Vol 131 (5) ◽  
pp. 734-741
Author(s):  
Paul M. Ness ◽  
Melissa M. Cushing

Abstract Context.—There is no true substitute for the many functions of human red blood cells, and synthetic products will not replace the need for blood donation in the foreseeable future. Hemoglobin-based oxygen carriers have many characteristics that would serve as a useful adjunct to red cells in clinical settings. Over time, these technologies have the potential to dramatically reshape the practice of transfusion medicine. Objective.—To review the characteristics and potential utility of hemoglobin-based oxygen carriers and perfluorocarbon-based oxygen carriers. Several hemoglobin-based oxygen carriers are under study in phase III clinical trials. Novel uses for synthetic oxygen therapeutics are emphasized. Data Sources.—All published reports with the key words oxygen therapeutics, blood substitutes, and red cell substitutes from 1933 until March 2006 were searched through Medline. Significant findings were synthesized. Conclusions.—Recognition of the true impact of red cell substitutes is still several years away. The most compelling products, hemoglobin-based oxygen carriers, have potential use in trauma, providing immediate oxygen-carrying support in the face of alloantibodies or autoantibodies, and in other clinical situations in which long-term survival of red cells is not essential. In the interim, efforts should be focused on enhancing the current blood supply system while supporting ongoing and planned blood substitute research efforts, including trials assessing novel clinical indications for these products.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 400-405 ◽  
Author(s):  
TA Lane ◽  
GE Lamkin

We investigated the effect of a candidate artificial blood substitute, Fluosol-DA (FDA), on human neutrophil function in a serum-free medium. In a 50% (vol/vol) mixture with polymorphonuclear cells (PMN), FDA had no effect on PMN viability, phagocytosis, superoxide anion generation, degranulation, or bactericidal activity. In striking contrast, the random migration and chemotaxis of PMN to both f-Met-Leu-Phe (fMLP) and activated serum were inhibited by 98% +/- 2%, 95% +/- 2%, and 88% +/- 6%, respectively. Inhibition of chemotaxis by FDA required no preincubation, was dose-dependent (50% inhibition [ID50] with a 14% vol/vol mixture with FDA), and was fully reversible by washing PMN free of FDA after one hour but not after 18 hours of incubation (32% +/- 11% inhibition of chemotaxis). FDA itself was not chemotactic and did not impair either the chemotactic activity or binding of fMLP to PMN. FDA also inhibited PMN adhesion (ID50, 9 +/- 1 vol/vol%). The inhibitory component of FDA was found to be its detergent additive, Pluronic F-68, which inhibited random migration, chemotaxis, and adhesion with ID50s of 1.4, 2.4, and 2.9 mg/mL, respectively (equivalent to FDA concentrations of 5, 9, and 11 vol/vol%, respectively). All the other components of FDA were noninhibitory. Plasma samples from humans injected with 8 mL/kg FDA and plasma samples from rabbits injected with 16 mL/kg FDA or an equivalent concentration of Pluronic F-68, when mixed with autologous PMN, also severely inhibited PMN chemotaxis. We conclude that exposure of PMN to clinically relevant concentrations of FDA inhibits PMN migration, presumably due to inhibition of adhesion. The inhibitory effect is entirely due to the detergent, Pluronic F-68. Artificial blood substitutes containing Pluronic F-68 may compromise the ability of PMN to prevent or effectively control microbial infections.


Blood ◽  
1984 ◽  
Vol 64 (2) ◽  
pp. 400-405 ◽  
Author(s):  
TA Lane ◽  
GE Lamkin

Abstract We investigated the effect of a candidate artificial blood substitute, Fluosol-DA (FDA), on human neutrophil function in a serum-free medium. In a 50% (vol/vol) mixture with polymorphonuclear cells (PMN), FDA had no effect on PMN viability, phagocytosis, superoxide anion generation, degranulation, or bactericidal activity. In striking contrast, the random migration and chemotaxis of PMN to both f-Met-Leu-Phe (fMLP) and activated serum were inhibited by 98% +/- 2%, 95% +/- 2%, and 88% +/- 6%, respectively. Inhibition of chemotaxis by FDA required no preincubation, was dose-dependent (50% inhibition [ID50] with a 14% vol/vol mixture with FDA), and was fully reversible by washing PMN free of FDA after one hour but not after 18 hours of incubation (32% +/- 11% inhibition of chemotaxis). FDA itself was not chemotactic and did not impair either the chemotactic activity or binding of fMLP to PMN. FDA also inhibited PMN adhesion (ID50, 9 +/- 1 vol/vol%). The inhibitory component of FDA was found to be its detergent additive, Pluronic F-68, which inhibited random migration, chemotaxis, and adhesion with ID50s of 1.4, 2.4, and 2.9 mg/mL, respectively (equivalent to FDA concentrations of 5, 9, and 11 vol/vol%, respectively). All the other components of FDA were noninhibitory. Plasma samples from humans injected with 8 mL/kg FDA and plasma samples from rabbits injected with 16 mL/kg FDA or an equivalent concentration of Pluronic F-68, when mixed with autologous PMN, also severely inhibited PMN chemotaxis. We conclude that exposure of PMN to clinically relevant concentrations of FDA inhibits PMN migration, presumably due to inhibition of adhesion. The inhibitory effect is entirely due to the detergent, Pluronic F-68. Artificial blood substitutes containing Pluronic F-68 may compromise the ability of PMN to prevent or effectively control microbial infections.


Author(s):  
Aditya Misra ◽  
Vandana Thukral

In the field of medicine, artificial blood is an innovative concept, where specially designed compounds are developed to perform the task of transport and delivery of oxygen. Hence, it can potentially replace the function of allogenic human blood transfusion. Several molecules have been developed using several approaches. However, with continuous refinements in the past few decades, the ideal blood substitute would likely be Hemoglobin Based Oxygen Carrier. The benefits of HBOCs are tremendous, as they do not require compatibility testing or tissue matching, are non-pathogenic, have a long shelf life, and can even be stored at room temperature. The advent of artificial blood is projected to have a remarkable impact on medical care in the future. While it will complement blood transfusion safely, it will also create a stable supply of effective products. It is likely to reduce the requirements of blood transfusions drastically in settings of surgery, trauma, or warfare.


Author(s):  
Johannes Jägers ◽  
Anna Wrobeln ◽  
Katja B. Ferenz

Abstract Developing biocompatible, synthetic oxygen carriers is a consistently challenging task that researchers have been pursuing for decades. Perfluorocarbons (PFC) are fascinating compounds with a huge capacity to dissolve gases, where the respiratory gases are of special interest for current investigations. Although largely chemically and biologically inert, pure PFCs are not suitable for injection into the vascular system. Extensive research created stable PFC nano-emulsions that avoid (i) fast clearance from the blood and (ii) long organ retention time, which leads to undesired transient side effects. PFC-based oxygen carriers (PFOCs) show a variety of application fields, which are worthwhile to investigate. To understand the difficulties that challenge researchers in creating formulations for clinical applications, this review provides the physical background of PFCs’ properties and then illuminates the reasons for instabilities of PFC emulsions. By linking the unique properties of PFCs and PFOCs to physiology, it elaborates on the response, processing and dysregulation, which the body experiences through intravascular PFOCs. Thereby the reader will receive a scientific and easily comprehensible overview why PFOCs are precious tools for so many diverse application areas from cancer therapeutics to blood substitutes up to organ preservation and diving disease.


Author(s):  
J.S. Geoffroy ◽  
R.P. Becker

The pattern of BSA-Au uptake in vivo by endothelial cells of the venous sinuses (sinusoidal cells) of rat bone marrow has been described previously. BSA-Au conjugates are taken up exclusively in coated pits and vesicles, enter and pass through an “endosomal” compartment comprised of smooth-membraned tubules and vacuoles and cup-like bodies, and subsequently reside in multivesicular and dense bodies. The process is very rapid, with BSA-Au reaching secondary lysosmes one minute after presentation. (Figure 1)In further investigations of this process an isolated limb perfusion method using an artificial blood substitute, Oxypherol-ET (O-ET; Alpha Therapeutics, Los Angeles, CA) was developed. Under nembutal anesthesia, male Sprague-Dawley rats were laparotomized. The left common iliac artery and vein were ligated and the right iliac artery was cannulated via the aorta with a small vein catheter. Pump tubing, preprimed with oxygenated 0-ET at 37°C, was connected to the cannula.


2008 ◽  
Vol 44 ◽  
pp. 63-84 ◽  
Author(s):  
Chris E. Cooper

Optimum performance in aerobic sports performance requires an efficient delivery to, and consumption of, oxygen by the exercising muscle. It is probable that maximal oxygen uptake in the athlete is multifactorial, being shared between cardiac output, blood oxygen content, muscle blood flow, oxygen diffusion from the blood to the cell and mitochondrial content. Of these, raising the blood oxygen content by raising the haematocrit is the simplest acute method to increase oxygen delivery and improve sport performance. Legal means of raising haematocrit include altitude training and hypoxic tents. Illegal means include blood doping and the administration of EPO (erythropoietin). The ability to make EPO by genetic means has resulted in an increase in its availability and use, although it is probable that recent testing methods may have had some impact. Less widely used illegal methods include the use of artificial blood oxygen carriers (the so-called ‘blood substitutes’). In principle these molecules could enhance aerobic sports performance; however, they would be readily detectable in urine and blood tests. An alternative to increasing the blood oxygen content is to increase the amount of oxygen that haemoglobin can deliver. It is possible to do this by using compounds that right-shift the haemoglobin dissociation curve (e.g. RSR13). There is a compromise between improving oxygen delivery at the muscle and losing oxygen uptake at the lung and it is unclear whether these reagents would enhance the performance of elite athletes. However, given the proven success of blood doping and EPO, attempts to manipulate these pathways are likely to lead to an ongoing battle between the athlete and the drug testers.


Author(s):  
Nora Goldschmidt ◽  
Barbara Graziosi

The Introduction sheds light on the reception of classical poetry by focusing on the materiality of the poets’ bodies and their tombs. It outlines four sets of issues, or commonplaces, that govern the organization of the entire volume. The first concerns the opposition between literature and material culture, the life of the mind vs the apprehensions of the body—which fails to acknowledge that poetry emerges from and is attended to by the mortal body. The second concerns the religious significance of the tomb and its location in a mythical landscape which is shaped, in part, by poetry. The third investigates the literary graveyard as a place where poets’ bodies and poetic corpora are collected. Finally, the alleged ‘tomb of Virgil’ provides a specific site where the major claims made in this volume can be most easily be tested.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Krishna Kanta Ghosh ◽  
Parasuraman Padmanabhan ◽  
Chang-Tong Yang ◽  
Sachin Mishra ◽  
Christer Halldin ◽  
...  

Abstract Positron emission tomography (PET) offers the study of biochemical, physiological, and pharmacological functions at a cellular and molecular level. The performance of a PET study mostly depends on the used radiotracer of interest. However, the development of a novel PET tracer is very difficult, as it is required to fulfill a lot of important criteria. PET radiotracers usually encounter different chemical modifications including redox reaction, hydrolysis, decarboxylation, and various conjugation processes within living organisms. Due to this biotransformation, different chemical entities are produced, and the amount of the parent radiotracer is declined. Consequently, the signal measured by the PET scanner indicates the entire amount of radioactivity deposited in the tissue; however, it does not offer any indication about the chemical disposition of the parent radiotracer itself. From a radiopharmaceutical perspective, it is necessary to quantify the parent radiotracer’s fraction present in the tissue. Hence, the identification of radiometabolites of the radiotracers is vital for PET imaging. There are mainly two reasons for the chemical identification of PET radiometabolites: firstly, to determine the amount of parent radiotracers in plasma, and secondly, to rule out (if a radiometabolite enters the brain) or correct any radiometabolite accumulation in peripheral tissue. Besides, radiometabolite formations of the tracer might be of concern for the PET study, as the radiometabolic products may display considerably contrasting distribution patterns inside the body when compared with the radiotracer itself. Therefore, necessary information is needed about these biochemical transformations to understand the distribution of radioactivity throughout the body. Various published review articles on PET radiometabolites mainly focus on the sample preparation techniques and recently available technology to improve the radiometabolite analysis process. This article essentially summarizes the chemical and structural identity of the radiometabolites of various radiotracers including [11C]PBB3, [11C]flumazenil, [18F]FEPE2I, [11C]PBR28, [11C]MADAM, and (+)[18F]flubatine. Besides, the importance of radiometabolite analysis in PET imaging is also briefly summarized. Moreover, this review also highlights how a slight chemical modification could reduce the formation of radiometabolites, which could interfere with the results of PET imaging. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document