scholarly journals Constitutive Modelling for Anisotropic Damage in Woven E-Glass Reinforcements

2017 ◽  
Vol 11 (1) ◽  
pp. 9-21
Author(s):  
Ping Yang ◽  
Ying Tong

It is easy for composite laminates to be damaged by relative lower velocity impact which could give rise to internal delamination that will strongly weaken the compressive strength of laminates. In order to predict the occurrence of matrix failure, the elastic-brittle behaviors of fiber-reinforced composites were modeled constitutively by an anisotropic damage model. The dynamic tensile testing was performed at a constant velocity of 2 mm/min until the sample broke to achieve the mechanical parameters of E-glass reinforcements. The elastic constitutive equation and the constitutive damage model were obtained on basis of the fundamental theory of mechanics about the orthotropic constitutive of reinforcements. The methodology for this constitutive model which is developed by Hashin considered both the effect of fiber and matrix failure. Then, the developed constitutive equations were incorporated into the FE (finite element) codes, ABAQUS, through the user subroutine module to simulate the process of projectile impacting GFRP composite laminates. The results show that the material deformation reaches a maximum at 24 μs, then occurs rebound with the increase of the time. The stress of reinforcements traverse section linearly increases outward from 0 MPa to 509.8 MPa. Material damage area increases with the prolonging of time, and for a fixed time, material damage gradually increases from the edges to the center and reaches a constant value of 1, which means the rupture of the damage process.

2014 ◽  
Vol 513-517 ◽  
pp. 235-237
Author(s):  
Shi Yang Zhao ◽  
Pu Xue

In order to effectively describe the damage process of composite laminates and reduce the complexity of material model, a mixed damage model based on Linde Criteria and Hashin Criteria is proposed for prediction of impact damage in the study. The mixed damage model can predict baisc failure modes, including fiber fracture, matrix tensile damage, matrix compressive damage. Fiber damage and matrix damage in compression are described based on the progressive damage mechanics; and matrix damage in tension is described based on Continuous Damage Mechanics (CDM). Meanwhile, for interlaminar delamination, damage is described by cohesive model. A finite element model is established to analyze the damage process of composite laminate. A good agreement is got between damage predictions and experimental results.


2020 ◽  
pp. 073168442097064
Author(s):  
Di Zhang ◽  
Xitao Zheng ◽  
Jin Zhou ◽  
Wenxuan Zhang

A finite element (FE) model based on fiber kinking and a transversal fracture angle damage model with cohesive elements are proposed to simulate the low-velocity impact (LVI) and compression after impact (CAI), and build a relationship between LVI energy and CAI strength of composites. The proposed FE model is validated by a comprehensive experimental work conducted using a high strength carbon fiber/epoxy material system i.e. CCF300/BA9916II and underwent LVI and CAI experimentation.  The relative errors between numerical and experimental results of LVI damage area, maximum impact force, impact time, as well as CAI strength are less than 5%. The FE analysis results of LVI show that the dominant damage mode is delamination, and the CAI results demonstrate a brittle behavior with almost no loss of stiffness before failure. It is further deduced that the relationship of LVI energy and damage induced is directly proportional initially; however, after a threshold level of impact energy, the curve turns horizontal so that the increase in further impact energy does not increase the damage area substantially. A similar relationship is developed between impact energy and CAI strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Hassan Ijaz ◽  
Waqas Saleem ◽  
Muhammad Zain-ul-abdein ◽  
Aqeel Ahmad Taimoor ◽  
Abdullah Salmeen Bin Mahfouz

Glass fibre-reinforced plastic (GFRP) composite laminates are used in many industries due to their excellent mechanical and thermal properties. However, these materials are prone to the initiation and propagation of delamination crack growth between different plies forming the laminate. The crack propagation may ultimately result in the failure of GFRP laminates as structural parts. In this research, a comprehensive mathematical model is presented to study the delamination crack growth in GFRP composite laminates under fatigue loading. A classical static damage model proposed by Allix and Ladevèze is modified as a fatigue damage model. Subsequently, the model is implemented in commercial finite element software via UMAT subroutine. The results obtained by the finite element simulations verify the experimental findings of Kenane and Benzeggagh for the fatigue crack growth in GFRP composite laminates.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Yao Ma ◽  
Chao Xin ◽  
Wei Zhang ◽  
Guangyong Jin

The application of laser fabrication of fiber-reinforced polymer (FRP) has an irreplaceable advantage. However, the effect of the plasma generated in laser fabrication on the damage process is rarely mentioned. In order to further study the law and mechanism of laser processing, the laser process was measured. CFRP and GFRP materials were damaged by a 1064 nm millisecond pulsed laser. Moreover, the propagation velocity and breakdown time of plasma plume were compared. The results show that GFRP is more vulnerable to breakdown than CFRP under the same conditions. In addition, the variation of plasma plume and material surface temperature with the number of pulses was also studied. The results show that the variation trend is correlated, that is, the singularities occur at the second pulse. Based on the analysis of experimental phenomena, this paper provides guidance for plasma phenomena in laser processing of composite materials.


2017 ◽  
Vol 62 (4) ◽  
pp. 753-774
Author(s):  
M. Abdia ◽  
H. Molladavoodi ◽  
H. Salarirad

Abstract The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.


2021 ◽  
Vol 9 (4) ◽  
pp. 379
Author(s):  
Sang-Gyu Lee ◽  
Daekyun Oh ◽  
Jong Hun Woo

Ship structures made of glass fiber-reinforced polymer (GFRP) composite laminates are considerably thicker than aircraft and automobile structures and more likely to contain voids. The production characteristics of such composite laminates were investigated in this study by ultrasonic nondestructive evaluation (NDE). The laminate samples were produced from E-glass chopped strand mat (CSM) and woven roving (WR) fabrics with different glass fiber contents of 30–70%. Approximately 300 pulse-echo ultrasonic A-scans were performed on each sample. The laminate samples produced from only CSM tended to contain more voids compared with those produced from a combination of CSM and WR, resulting in the relative density of the former being lower than the design value, particularly for high glass fiber contents of ≥50%. The velocity of the ultrasonic waves through the CSM-only laminates was also lower for higher glass fiber contents, whereas it steadily increased for combined CSM–WR laminates. Burn-off tests of the laminates further revealed that the fabric configuration of the combined CSM–WR laminates was of higher quality, prevented the formation of voids, and improved inter-layer bonding. These findings indicate that combined CSM–WR laminates should be used to achieve more accurate ultrasonic NDE of GFRP composite structures.


2015 ◽  
Vol 784 ◽  
pp. 292-299 ◽  
Author(s):  
Stephan Wulfinghoff ◽  
Marek Fassin ◽  
Stefanie Reese

In this work, two time integration algorithms for the anisotropic damage model proposed by Lemaitre et al. (2000) are compared. Specifically, the standard implicit Euler scheme is compared to an algorithm which implicitly solves the elasto-plastic evolution equations and explicitly computes the damage update. To this end, a three dimensional bending example is solved using the finite element method and the results of the two algorithms are compared for different time step sizes.


Sign in / Sign up

Export Citation Format

Share Document