scholarly journals Effect of Short-Time Povidone-Iodine Application on Osteoblast Proliferation and Differentiation

2009 ◽  
Vol 3 (1) ◽  
pp. 208-212 ◽  
Author(s):  
P.R Schmidlin ◽  
T Imfeld ◽  
P Sahrmann ◽  
A Tchouboukov ◽  
F.E Weber

Background and Objective: Povidone-iodine [polyvinylpyrrolidone-iodine complex (PVP-I)] is a broad-spectrum antimicrobial agent, frequently used in dentistry. In this study we investigated the short- and longterm effects on osteoblast number, viability, and function after short exposure to PVP-I with and without additional bone-morphogenetic protein-2 (BMP-2). Material and Methods: Confluent osteoblast-like cell line (MC3T3-E1, subclone 24) cultures were exposed to pure PVP-I solution (7.7 mg/ml) and dilutions of 1:10, 1:100 and 1:1000 for 10 seconds and washed with phosphate buffer solution. Cell proliferation and viability was determined by MTT and differentiation status by alkaline phosphatase (ALP) activity 6 days after initial plating. In a separate experiment, long-term cell proliferation, viability and function were assessed 4 weeks after PVP-I treatment by MTT and deposited calcium using an Alizarin-red staining test. Results: PVP-I decreased ALP activity substantially. Stimulation by BMP-2 recovered ALP activity to near control levels at 1:100 and 1:1000 dilutions of PVP-I. The MTT assay showed reduced proliferation of the preosteoblastic cells for all treatments, irrespective whether BMP-2 was used or not. Only at PVP-I dilutions of 1:1000 proliferation rate was back to normal levels (95.6±2.4 %). No adverse long-term effect of PVP-I on mineralization of the extracellular matrix (Alizarinred) for dilutions higher than 1:100 was observed. Interestingly, undiluted and 1:10 diluted PVP-I even showed a significant increase in mineral deposition, especially in the presence of BMP-2. Conclusion: Short-time application of PVP-I in concentrations of 1:10 and higher lead to decreased viability and impaired differentiation. However, surviving cells showed good recovery and mineralization potential.

2019 ◽  
Vol 74 (7-8) ◽  
pp. 167-174
Author(s):  
Mihyang Kim ◽  
Jeong Hyeon Kang ◽  
Geun Hye Oh ◽  
Mi Hwa Park

Abstract Osteoporosis is one of the most common bone diseases, occurring due to an imbalance between bone formation and bone resorption. The aim of this study was to investigate the effects of Ishige sinicola, a brown alga, on osteoblast differentiation through the activation of the bone morphogenetic protein 2 (BMP-2)/runt-related transcription factor 2 (Runx2) signalling pathway in MC3T3-E1 cells. A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining, and expression analysis of osteoblastic genes were carried out to assess MC3T3-E1 cell proliferation and osteoblastic differentiation. We found that I. sinicola extract (ISE) increased cell proliferation in a dose-dependent manner. Ishige sinicola extract markedly promoted ALP activity and mineralization. Alizarin red S staining demonstrated that ISE treatment tended to increase extracellular matrix calcium accumulation. Moreover, ISE up-regulated the osteoprotegerin/receptor activator of nuclear factor κB ligand ratio. Ishige sinicola extract also increased the protein expression levels of type 1 collagen, ALP, osteocalcin, osterix, BMP-2, and Runx2. Therefore, ISE showed potential in stimulating osteoblastic bone formation, and it might be useful for the prevention and treatment of osteoporosis.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3834-3834
Author(s):  
Antonio Garcia-Gomez ◽  
Mercedes Garayoa ◽  
Enrique M. Ocio ◽  
Edvan Crusoe ◽  
Diego Fernández ◽  
...  

Abstract Abstract 3834 Poster Board III-770 Introduction Multiple myeloma (MM), an hematological malignancy of terminally differentiated plasma cells, is characterized by the presence of bone disease, caused by increased osteoclast (OC) activity and differentiation as well as a reduction in osteoblast (OB) number and function. Dasatinib (BMS-354825) is an oral multitargeted tyrosin-kinase inhibitor approved for chronic myeloid leukemia which is also under clinical investigation in several other types of tumors. Preclinical data suggests that dasatinib can also be of value in MM based on its effects on myelomatous plasma cells and angiogenesis. In this study, we have further investigated the effects of dasatinib on in vitro OB differentiation and function, as well as on OC formation and resorption activity. Materials and methods For studies on OB differentiation and function, human mensenchymal stem cells (hMSC) from bone marrow samples of healthy donors and MM patients were used. Alternatively, the mesenchymal hMSC-TERT, the osteoblast-like (MG-63) and multiple myeloma (MM.1S) cell lines were employed. Dasatinib mechanism of action was investigated by Western blotting, PKH67/Annexin V/7 aminoactinomycin D staining, real time RT-PCR, alkaline phosphatase (ALP) activity and quantitative mineralization assays. Receptor activator of nuclear factor κ B ligand (RANKL) and osteoprotegerin (OPG) levels in conditioned media were measured by ELISA. OCs were generated by culture of peripheral blood mononuclear cells from healthy volunteers in medium containing macrophage colony stimulating factor and RANKL. The effect of dasatinib on osteoclastogenesis was assessed by enumeration of multinucleated (≥3) tartrate resistant acid phosphatase-positive cells, whereas bone resorption was calculated by the resorbed area on calcium-coated slides. Results We found that dasatinib inhibited platelet derived growth factor (PDGF)-stimulated activation of PDGF receptor β (PDGFRβ) and c-Src in hMSC-TERT and MG-63 cell lines, both tyrosin kinases implicated in OB remodelation processes. Inhibition of PDGFRβ and c-Src signalling correlated with diminished proliferation of the same cell lines without affecting cell viavility as assessed by PKH67/Annexin V/7 aminoactinomycin D staining. Also, treatment of human osteoprogenitor cells with low dasatinib concentrations (2 - 5 nM) promoted OB differentiation since ALP activity at day 7 and gene expression levels of bone formation markers (Runx2/Cbfa1, ALP, and COLIA1) at day 7 and 14 in the osteoblastic differentiation process, were elevated; besides, dasatinib also increased mineral nodular formation as per quantification of alizarin red staining. Finally, treatment with dasatinib decreased the RANKL/OPG ratio in conditioned media from co-cultures of MG-63 and MM.1S cell lines. Similar range of dasatinib concentrations markedly inhibited OC formation, both at the initial and late stages of differentiation from hemopoietic progenitor cells. Finally, a significant reduction of OC resorptive activity of a calcium-coated substrate was observed. Conclusion Our results indicate that dasatinib favours both OB differentiation and activity and markedly impairs osteoclastogenesis and OC resorption, thus providing rationale for its use to improve bone lesions in MM patients and other bone pathologies. This work was supported by grants from Ministerio de Ciencia e Innovación - ISCIII (PI081825); Fundación de Investigación Médica Mutua Madrileña AP27262008, and Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León 07-09, Consejería Sanidad JCyL-ISCIII. Disclosures: Garzon: Bristol-Myers Squibb Company: Employment.


2021 ◽  
Author(s):  
Gaoying Ran ◽  
Wei Fang ◽  
Lifang Zhang ◽  
Yuting Peng ◽  
Jiatong Li ◽  
...  

Objectives: Insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein 2 (BMP-2) both promote osteogenesis of bone marrow mesenchymal stem cells (BMSCs). IGF-1C, the C domain peptide of IGF-1, and P24, a BMP-2-derived peptide, both have similar biological activities as their parent growth factors. This study aimed to investigate the effects and their mechanisms of polypeptides IGF-1C and P24 on the osteogenic differentiation of BMSCs. Methods: The optimum concentrations of IGF-IC and P24 were explored. The effects of the two polypeptides on the proliferation and osteogenic differentiation of BMSCs were examined using the Cell Counting Kit-8 (CCK-8), Alkaline phosphatase (ALP) staining, ALP activity assay, alizarin red S staining, qPCR, and western blotting. In addition, specific pathway inhibitors were utilized to explore whether p38 and JNK pathways were involved in this process. Results: The optimal concentrations of action were both 50 g/ml. IGF-1C and P24 synergistically promoted the proliferation of BMSCs, increased ALP activity and the formation of calcified nodules and upregulated the mRNA and protein levels of osterix (Osx), runt-related transcription factor 2 (Runx2), and osteocalcin (Ocn), phosphorylation level of p38 and JNK proteins also improved. Inhibition of the pathways significantly reduced the activation of p38 and JNK, blocked the expression of Runx2 while inhibiting ALP activity and the formation of calcified nodules. Conclusions: These findings suggest IGF-1C and P24 synergistically promote the osteogenesis of BMSCs through activation of p38 and JNK signal pathways.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaomin Su ◽  
Haoqing Yang ◽  
Ruitang Shi ◽  
Chen Zhang ◽  
Huina Liu ◽  
...  

Abstract Background Tissue regeneration mediated by mesenchymal stem cells (MSCs) is deemed a desirable way to repair teeth and craniomaxillofacial tissue defects. Nevertheless, the molecular mechanisms about cell proliferation and committed differentiation of MSCs remain obscure. Previous researches have proved that lysine demethylase 2A (KDM2A) performed significant function in the regulation of MSC proliferation and differentiation. SNRNP200, as a co-binding factor of KDM2A, its potential effect in regulating MSCs’ function is still unclear. Therefore, stem cells from the apical papilla (SCAPs) were used to investigate the function of SNRNP200 in this research. Methods The alkaline phosphatase (ALP) activity assay, Alizarin Red staining, and osteogenesis-related gene expressions were used to examine osteo−/dentinogenic differentiation potential. Carboxyfluorescein diacetate, succinimidyl ester (CFSE) and cell cycle analysis were applied to detect the cell proliferation. Western blot analysis was used to evaluate the expressions of cell cycle-related proteins. Results Depletion of SNRNP200 caused an obvious decrease of ALP activity, mineralization formation and the expressions of osteo−/dentinogenic genes including RUNX2, DSPP, DMP1 and BSP. Meanwhile, CFSE and cell cycle assays revealed that knock-down of SNRNP200 inhibited the cell proliferation and blocked cell cycle at the G2/M and S phase in SCAPs. In addition, it was found that depletion of SNRNP200 up-regulated p21 and p53, and down-regulated the CDK1, CyclinB, CyclinE and CDK2. Conclusions Depletion of SNRNP200 repressed osteo−/dentinogenic differentiation potentials and restrained cell proliferation through blocking cell cycle progression at the G2/M and S phase, further revealing that SNRNP200 has crucial effects on preserving the proliferation and differentiation potentials of dental tissue-derived MSCs.


2021 ◽  
Author(s):  
Ebrahim Rahmani-Moghadam ◽  
Tahereh Talaei-Khozani ◽  
Vahideh Zarrin ◽  
Zahra Vojdani

Abstract Background: Hydroxyapatite (HA) can be loaded by some osteogenic inducing agents such as thymoquinone (TQ) and alginate. This study was performed to investigate the effect of TQ loading into HA/alginate scaffolds on osteogenic differentiation capability of mesenchymal stem cells.Methods: HA scaffolds were fabricated by casting and sintering method and impregnated by TQ containing alginate. The stem cells were loaded onto the scaffolds and induced to differentiate into osteoblasts. Alkaline Phosphatase (ALP) activity, Alizarin Red S, Real-Time qRT-PCR, and MTT assessments were done. Finally, the cells were examined with a light microscope, confocal microscope, and SEM.Results: The results showed that the presence of the alginate decelerates the degradation rate and reinforces the mechanical strength. while the presence of TQ had no significant influence on physical and mechanical properties of the HA/alginate scaffolds, it led to a significant increase in ALP activity and expression of collagen, osteopontin, and osteocalcin at early phase of differentiation. Also, TQ administration had no impact on calcium deposition and proliferation as well as bone-marker expression at long term differentiation.Conclusion: TQ accelerates the differentiation of the stem cells into the osteoblasts without changing the properties of the scaffolds, and the HA/alginate/TQ scaffold can be used as a scaffold with osteogenic properties in bone tissue engineering applications.


2016 ◽  
Vol 35 (10) ◽  
pp. 1123-1132 ◽  
Author(s):  
Y Chen ◽  
L Wu ◽  
Q Wang ◽  
M Wu ◽  
B Xu ◽  
...  

Prussian blue nanoparticle (PBNP), a new type of theranostic nanomaterial, had been used for cancer magnetic resonance imaging and photothermal therapy. However, their long-term toxicity after short exposure in vivo was still unclear. In this study, we investigated the dynamic changes of the biochemical and immunity indicators of mice after PBNPs injection through tail vein. Histological results showed that the PBNPs were mainly accumulated in liver and spleen. In the spleen, we found the frequency of T cells was starting to decrease after 1 day of PBNPs injection, but then slowly recovered to normal level after 60 days of injection. Meanwhile, the frequency of T cells in the blood was firstly decreased after the PBNPs injection, and then the T cell frequency kept increasing and recovered back to normal levels after 7 days of injection. The serum indexes of liver functions (alanine transaminase, aspartate transaminase, total bilirubin, and alkaline phosphatase) increased rapidly to a relatively high level only after 1 h of injection, which meant certain acute liver damage, but these indexes were gradually decreased to normal levels after 60 days of injection. These results indicate that PBNPs have acute toxicity in vivo, however, their long-term toxicity after short-time exposure is low, which might provide guidance for further applications of PBNPs in future.


2020 ◽  
Author(s):  
Shuting Jiang ◽  
Hongyan Liu ◽  
Weiyan Zhu ◽  
Hui Yan ◽  
Beizhan Yan

Abstract Background Mesenchymal stem cells transplantation gradually become a potential treatment for bone defect in clinic practice. This study aimed to investigate the molecular mechanism of PRP and autophagy for osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Methods Thrombin activated PRP was prepared and the BMSCs were treated with activated PRP with different concentration and transfected with miR-140-3p vector (mimics or inhibitor), si-SPRED2 or co-transfected with miR-140-3p inhibitor and si-SPRED2, respectively. qRT-PCR and Western blotting were used to determine the mRNA expression and protein expression. A luciferase reporter assay was conducted to identified the targeting relationship between iR-140-3p and SPRED2 Subsequently, cell proliferation was detected by MTT and ALP activity was also determined. Alizarin red staining was used for the evaluating the formation of calcium nodules. Results MiR-140-3p expression was found to be inhibited by PRP in a dose-dependent manner, besides, cell proliferation, ALP activity, the expression of COL-I, OPN, Runx2 and OCN, and the formation of calcium nodules related to osteogenic differentiation were enhanced by PRP. Subsequently, we found that PRP activated autophagy and up-regulated SPRED2 expression in BMSCs through suppressing miR-140-3p expression. Moreover, we confirmed that miR-140-3p targeted SPRED2 and negatively regulation its expression. Finally, the findings showed that inhibition of miR-140-3p enhanced cell proliferation, osteogenic differentiation and autophagy of BMSCs by negatively regulating SPRED2 expression. Conclusion Thrombin activated PRP accelerated osteogenic differentiation of BMSCs by activing autophagy through miR-140-3p/SPRED2 axis.


2022 ◽  
Vol 12 (5) ◽  
pp. 978-983
Author(s):  
Shengdi Ding ◽  
Shitong Xing ◽  
Zhanfeng Zhang ◽  
Zhenguo Sun ◽  
Xiaojie Dou ◽  
...  

The menopausal hormone abnormal changes such as estrogen deficiency and increased FSH secretion in female patients in old age may cause osteoporosis which is plagued by patients. The pathogenesis of osteoporosis is not yet fully understood. BMP in the transforming growth factor-β superfamily is a key member in the process of bone growth and development, among which BMP-2 exerts critical roles. Impaired osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) contributes to the progress of osteoporosis. BMSC plays an indispensable role in treating osteoporosis and can develop into different directions through induction. As the regenerative medicine nanotechnology has become a new medical method, it is believed that BMSC can be used to treat osteoporosis and other related diseases. Our study analyzed the effects of BMP-2/estrogen composite nanoparticles on the proliferation and differentiation of osteoporotic BMSC cells to provide a reliable reference for the future treatment. Our results showed that BMP-2/estrogen composite nanoparticles promoted BMSC cell proliferation, increased ALP activity, decreased apoptosis rate, increased the expression of Col-1, Runx2 and Osterix, upregulated the osteogenic marker BMP-2. As confirmed by Alizarin Red staining, it could differentiate into osteoblasts and the content of Trap was decreased. In conclusion, our study confirms that BMP-2/estrogen composite nanoparticles can promote BMSC cell proliferation, osteogenic differentiation, and inhibit osteoclast differentiation, thereby providing new treatments and theoretical reference basis for treating osteoporosis.


2021 ◽  
Vol 23 (1) ◽  
pp. 136
Author(s):  
Justin Braveboy-Wagner ◽  
Yoav Sharoni ◽  
Peter I. Lelkes

Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.


Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 543 ◽  
Author(s):  
Jung Hwan Oh ◽  
Byul-Nim Ahn ◽  
Fatih Karadeniz ◽  
Jung-Ae Kim ◽  
Jung Im Lee ◽  
...  

The deterioration of bone formation is a leading cause of age-related bone disorders. Lack of bone formation is induced by decreased osteoblastogenesis. In this study, osteoblastogenesis promoting effects of algal phlorotannin, phlorofucofuroeckol A (PFF-A), were evaluated. PFF-A was isolated from brown alga Ecklonia cava. The ability of PFF-A to enhance osteoblast differentiation was observed in murine pre-osteoblast cell line MC3T3-E1 and human bone marrow-derived mesenchymal stem cells (huBM-MSCs). Proliferation and alkaline phosphatase (ALP) activity of osteoblasts during differentiation was assayed following PFF-A treatment along extracellular mineralization. In addition, effect of PFF-A on osteoblast maturation pathways such as Runx2 and Smads was analyzed. Treatment of PFF-A was able to enhance the proliferation of differentiating osteoblasts. Also, ALP activity was observed to be increased. Osteoblasts showed increased extracellular mineralization, observed by Alizarin Red staining, following PFF-A treatment. In addition, expression levels of critical proteins in osteoblastogenesis such as ALP, bone morphogenetic protein-2 (BMP-2), osteocalcin and β-catenin were stimulated after the introduction of PFF-A. In conclusion, PFF-A was suggested to be a potential natural product with osteoblastogenesis enhancing effects which can be utilized against bone-remodeling imbalances and osteoporosis-related complications.


Sign in / Sign up

Export Citation Format

Share Document