scholarly journals Oral Microbiota Associated with Oral and Gastroenteric Cancer

2020 ◽  
Vol 14 (1) ◽  
pp. 1-17 ◽  
Author(s):  
D. Adriana G. Robayo ◽  
Raquel F. Hernandez ◽  
Alveiro T. Erira ◽  
Ljubov Kandaurova ◽  
Celia L. Juarez ◽  
...  

When the normal microbiota-host interactions are altered, the commensal microbial community evolves to a dysbiotic status resulting in some species becoming pathogenic and acting synergistically in the development of local and systemic diseases, including cancer. Advances in genetics, immunology and microbiology during the last years have made it possible to gather information on the oral and gastrointestinal microbiome and its interaction with the host, which has led to a better understanding of the interrelationship between microbiota and cancer. There is growing evidence in support for the role of some species in the development, progression and responses to treatment of various types of cancer. Accordingly, the number of studies investigating the association between oral microbiota and oral and gastrointestinal cancers has increased significantly during the last years. Here, we review the literature documenting associations of oral microbiota with oral and gastroenteric cancers.

Author(s):  
Liang Ren ◽  
Daonan Shen ◽  
Chengcheng Liu ◽  
Yi Ding

The human oral cavity harbors approximately 1,000 microbial species, and dysbiosis of the microflora and imbalanced microbiota-host interactions drive many oral diseases, such as dental caries and periodontal disease. Oral microbiota homeostasis is critical for systemic health. Over the last two decades, bacterial protein phosphorylation systems have been extensively studied, providing mounting evidence of the pivotal role of tyrosine and serine/threonine phosphorylation in oral bacterial dysbiosis and bacteria-host interactions. Ongoing investigations aim to discover novel kinases and phosphatases and to understand the mechanism by which these phosphorylation events regulate the pathogenicity of oral bacteria. Here, we summarize the structures of bacterial tyrosine and serine/threonine kinases and phosphatases and discuss the roles of tyrosine and serine/threonine phosphorylation systems in Porphyromonas gingivalis and Streptococcus mutans, emphasizing their involvement in bacterial metabolism and virulence, community development, and bacteria-host interactions.


Author(s):  
Cristina Barboza-Solís DDS, MSc, PhD ◽  
Luis Alberto Acuña-Amador PhD

In recent decades, a body of literature examining the relationships between oral health and general health has rapidly developed. However, the biological mechanisms involved in explaining such relationships have not been fully described. Recent evidence has suggested that these relationships could be partially explained by the composition and interaction of the microbiome/microbiota between local and systemic body sites. For instance, it has been suggested that intestinal microbiota could have effects on non-communicable diseases, such as diabetes or cardiovascular diseases. The objective of this study is to explore current evidence of the link between oral and systemic diseases, to discuss whether oral microbiome/microbiota could represent an unexplored biological pathway partially explaining those relationships. A non-systematic review of the literature was carried out using keyword searches in Pubmed from February to May 2019. The ultimate goal was to present recent scientific evidence to update the general knowledge on this topic to professionals in dentistry. This review is divided in two parts for journal publication; however, it is intended to be used as one piece. In this first part, we will summarize the conceptual background of oral microbiome/microbiota, we will describe the main methods used in microbiology to characterize oral organisms, and will present the main composition of bacteria in oral microbiome/microbiota. The second part highlights the main evidence regarding the biological plausibility that links oral microbiome and systemic diseases and we will conclude with some future research recommendations. Taking into account the role of oral microbiota in the development of systemic diseases could change the main paradigm of how oral health is currently conceptualized by dental professionals.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 766
Author(s):  
David F. Woods ◽  
Stephanie Flynn ◽  
Jose A. Caparrós-Martín ◽  
Stephen M. Stick ◽  
F. Jerry Reen ◽  
...  

The study of the respiratory microbiota has revealed that the lungs of healthy and diseased individuals harbour distinct microbial communities. Imbalances in these communities can contribute to the pathogenesis of lung disease. How these imbalances occur and establish is largely unknown. This review is focused on the genetically inherited condition of Cystic Fibrosis (CF). Understanding the microbial and host-related factors that govern the establishment of chronic CF lung inflammation and pathogen colonisation is essential. Specifically, dissecting the interplay in the inflammation–pathogen–host axis. Bile acids are important host derived and microbially modified signal molecules that have been detected in CF lungs. These bile acids are associated with inflammation and restructuring of the lung microbiota linked to chronicity. This community remodelling involves a switch in the lung microbiota from a high biodiversity/low pathogen state to a low biodiversity/pathogen-dominated state. Bile acids are particularly associated with the dominance of Proteobacterial pathogens. The ability of bile acids to impact directly on both the lung microbiota and the host response offers a unifying principle underpinning the pathogenesis of CF. The modulating role of bile acids in lung microbiota dysbiosis and inflammation could offer new potential targets for designing innovative therapeutic approaches for respiratory disease.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 113 ◽  
Author(s):  
Stephanie Maia Acuña ◽  
Lucile Maria Floeter-Winter ◽  
Sandra Marcia Muxel

An inflammatory response is essential for combating invading pathogens. Several effector components, as well as immune cell populations, are involved in mounting an immune response, thereby destroying pathogenic organisms such as bacteria, fungi, viruses, and parasites. In the past decade, microRNAs (miRNAs), a group of noncoding small RNAs, have emerged as functionally significant regulatory molecules with the significant capability of fine-tuning biological processes. The important role of miRNAs in inflammation and immune responses is highlighted by studies in which the regulation of miRNAs in the host was shown to be related to infectious diseases and associated with the eradication or susceptibility of the infection. Here, we review the biological aspects of microRNAs, focusing on their roles as regulators of gene expression during pathogen–host interactions and their implications in the immune response against Leishmania, Trypanosoma, Toxoplasma, and Plasmodium infectious diseases.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2124
Author(s):  
Se-Young Park ◽  
Byeong-Oh Hwang ◽  
Mihwa Lim ◽  
Seung-Ho Ok ◽  
Sun-Kyoung Lee ◽  
...  

It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral–gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral–gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral–gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral–gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral–gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.


mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Jizhong Zhou ◽  
Wenzong Liu ◽  
Ye Deng ◽  
Yi-Huei Jiang ◽  
Kai Xue ◽  
...  

ABSTRACTThe processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management.IMPORTANCEMicroorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of stochastic processes in generating microbial biodiversity is rarely appreciated. Moreover, while microorganisms mediate many ecosystem processes, the relationship between microbial diversity and ecosystem functioning remains largely elusive. Using a well-controlled laboratory system, this study provides empirical support for the dominant role of stochastic assembly in creating variations of microbial diversity and the first explicit evidence for the critical role of community assembly in influencing ecosystem functioning. The results presented in this study represent important contributions to the understanding of the mechanisms, especially stochastic processes, involved in shaping microbial biodiversity.


Sign in / Sign up

Export Citation Format

Share Document