scholarly journals Cryopreservation Effect on Proliferative and Chondrogenic Potential of Human Chondrocytes Isolated from Superficial and Deep Cartilage

2012 ◽  
Vol 6 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Emma Muiños-López ◽  
Mª Esther Rendal-Vázquez ◽  
Tamara Hermida-Gómez ◽  
Isaac Fuentes-Boquete ◽  
Silvia Díaz-Prado ◽  
...  

Objectives:To compare the proliferative and chondrogenic potential of fresh and frozen chondrocytes isolated from superficial and deep articular cartilage biopsies.Materials and Methodology:The study included 12 samples of fresh and frozen healthy human knee articular cartilage. Cell proliferation was tested at 3, 6 and 9 days. Studies of mRNA quantification, protein expression and immunofluorescence for proliferation and chondrogenic markers were performed.Results:Stimulation of fresh and frozen chondrocytes from both superficial and deep cartilage with fetal bovine serum produced an increase in the proliferative capacity compared to the non-stimulated control group. In the stimulated fresh cells group, the proliferative capacity of cells from the deep biopsy was greater than that from cells from the superficial biopsy (0.046vs0.028, respectively, p<0.05). There was also a significant difference between the proliferative capacity of superficial zone fresh (0.028) and frozen (0.051) chondrocytes (p<0.05).CCND1mRNA and protein expression levels, and immunopositivity forKi67revealed a higher proliferative capacity for fresh articular chondrocytes from deep cartilage. Regarding the chondrogenic potential, stimulated fresh cells showed higherSOX9andCol IIexpression in chondrocytes from deep than from superficial zone (p<0.05,Tstudent test).Conclusions:The highest rate of cell proliferation and chondrogenic potential of fresh chondrocytes was found in cells obtained from deep cartilage biopsies, whereas there were no statistically significant differences in proliferative and chondrogenic capacity between biopsy origins with frozen chondrocytes. These results indicate that both origin and cryopreservation affect the proliferative and chondrogenic potential of chondrocytes.

2021 ◽  
Vol 18 (3) ◽  
pp. 499-504
Author(s):  
Yingyi Wu ◽  
Guangxia Yang ◽  
Jing Fei ◽  
Yang Huang

Purpose: To investigate the effect of the hedgehog (Hh) pathway inhibitor, cyclopamine, and activator purmorphamine on articular cartilage cell proliferation. Methods: Rats were subjected to AA and CIA models. Secondary paw swelling was measured at 12, 15, 18, 21, 24, 27, and 30 days. The rats were sacrificed on day 30. Tissues from the cartilage and knee joints were collected. Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay while cell apoptosis was determined by annexin V-fluorescein isothiocyanate/propidium iodide assay. Protein expression levels of Shh, Ptch1 and Gli1 were determined by Western blotting. Results: Compared with the control group, arthritis index and secondary foot swelling of the adjuvant arthritis (AA) and collagen-induced arthritis (CIA) groups deteriorated significantly (p < 0.05). MTT data revealed that cyclopamine promoted articular cartilage cell proliferation of the AA and CIA groups. The cell proliferation rates of AA and CIA groups were significantly higher than that of control group (p < 0.05). Flow cytometry showed that the cell apoptosis rates of AA and CIA groups were significantly lower than that of control group (p < 0.05). Compared with control, cyclopamine decreased the protein expression levels of sonic Hh, patched homologue 1 and glioma-associated oncogene homologue, but the effect of purmorphamine was the reverse. Conclusion: Hh pathway inhibitor (cyclopamine) and activator (purmorphamine) affect the expression of Hh pathway. Disruption of the Hh pathway may be of potential therapeutic significance in protecting articular cartilage from rheumatoid arthritis.


Author(s):  
Aty Widyawaruyanti ◽  
Arijanto Jonosewojo ◽  
Hilkatul Ilmi ◽  
Lidya Tumewu ◽  
Ario Imandiri ◽  
...  

Abstract Objectives Andrographis paniculata tablets (AS201-01) have previously been shown to have potent bioactivity as an antimalarial and to produce no unwanted side effects in animal models. Here, we present the phase 1 clinical trial conducted to evaluate the safety of AS201-01 tablets in healthy volunteers. Methods The study was a randomized, double-blind controlled cross-over, a placebo-controlled design consisting of a 4-day treatment of AS201-01 tablets. A total of 30 healthy human volunteers (16 males and 14 females) were divided into two groups, and each group was given 4 tablets, twice daily for 4 days. Group 1 received AS201-01, while group 2 received placebo tablets. Volunteers were given a physical examination before the treatment. The effects of AS201-01 on random blood glucose, biochemical, and hematological as well as urine profiles were investigated. Results There were no changes in observed parameters as a result of AS201-01 being administered. Statistical analysis showed no significant difference (p>0.05) between the test and control group regarding hematology profile, biochemical profile, and random blood glucose. Increased appetite and better sleep, which categorized as grade 1 adverse event was reported after treatment with AS201-01 tablet Conclusions The outcome supports our previous observation that the AS201-01 tablet, given twice a day for 4 days, is safe and nontoxic.


2022 ◽  
Vol 12 (3) ◽  
pp. 602-608
Author(s):  
Wuping Yao ◽  
Yuji Li ◽  
Zhi Liu ◽  
Liuyi Yao ◽  
Rui Liang ◽  
...  

Our study assesses the role of a scaffold constructed by co-culture of autologous oxygen-releasing biomimetic scaffold (AONS) and chondrocytes in joint repair after trauma. A composite scaffold structure was used and a scaffold constructed of AONS and chondrocytes was transplanted into SD rats to create models of patellar cartilage fracture and hip osteochondral fracture, respectively followed by analysis of cell proliferation by immunofluorescence method, osteogenesis-related gene expression by RT-PCR, chondrocytes apoptosis by TUNEL staining. The blank control group and AONS composite chondrocytes have significant differences in apoptosis and cell proliferation of two fracture types (P <0.05). The autologous oxygen-releasing nanometers at 4 and 8 weeks showed a significant difference in the number of PCNA and TUNEL cells between biomimetic scaffold and chondrocytes in two groups (P < 0.05). The AONS and chondrocytes were effective for two types of fractures at 1, 4 and 8 weeks. The expression of various markers of intrachondral osteogenesis was decreased and the markers of hip osteochondral fracture were increased significantly (P < 0.05). Joint recovery was better than patellar cartilage fractures. The AONS composite chondrocyte scaffold promotes repair of patellar cartilage fractures and hip osteochondral fractures with a better effect on hip osteochondral fractures.


2020 ◽  
Author(s):  
Melina Bellini ◽  
Michael Andrew Pest ◽  
Manuela Miranda Rodrigues ◽  
Ling Qin ◽  
Jae-Wook Jeong ◽  
...  

Abstract Background: Osteoarthritis (OA) is the most common form of arthritis and characterized by degeneration of articular cartilage. Mitogen-inducible gene 6 (Mig-6) has been identified as a negative regulator of the Epidermal Growth Factor Receptor (EGFR). Cartilage-specific Mig-6 knockout (KO) mice display increased EGFR signaling, an anabolic buildup of articular cartilage and formation of chondro-osseous nodules. Since our understanding of the EGFR/Mig-6 network in cartilage remains incomplete, we characterized mice with cartilage-specific overexpression of Mig-6 in this study. Methods: Utilizing knee joints from cartilage-specific Mig-6 overexpressing (Mig-6over/over) mice (at multiple time points), we evaluated the articular cartilage using histology, immunohistochemical staining and semi-quantitative histopathological scoring (OARSI) at multiple ages. MicroCT analysis was employed to examine skeletal morphometry, body composition, and bone mineral density.Results: Our data show that cartilage-specific Mig-6 overexpression did not cause any major developmental abnormalities in articular cartilage, although Mig-6over/over mice have slightly shorter long bones compared to the control group. Moreover, there was no significant difference in bone mineral density and body composition in any of the groups. However, our results indicate that Mig-6over/over male mice show accelerated cartilage degeneration at 12 and 18 months of age. Immunohistochemistry for SOX9 demonstrated that the number of positively stained cells in Mig-6over/over mice was decreased relative to controls. Immunostaining for MMP13 appeared increased in areas of cartilage degeneration in Mig-6over/over mice. Moreover, staining for phospho-EGFR (Tyr-1173) and lubricin (PRG4) was decreased in the articular cartilage of Mig-6over/over mice. Conclusion: Overexpression of Mig-6 in articular cartilage causes no major developmental phenotype; however, these mice develop earlier OA during aging. These data demonstrate that Mig-6/EGFR pathways is critical for joint homeostasis and might present a promising therapeutic target for OA.


2020 ◽  
Author(s):  
Jianan Ouyang ◽  
Zhenhan Deng ◽  
Kang Chen ◽  
Jianyi Xiong ◽  
Ying Li ◽  
...  

Abstract [Objective] To determine the cellular compatibility of porous tantalum-niobium (Ta-Nb) material. [Method] Rabbit osteoblasts were co-cultured with porous Ta-Nb material. The cell proliferation was detected by CCK-8 method, and the cell adhesion was observed under scanning electron microscope (SEM). The expressions of type-I collagen and osteocalcin were detected by RT-PCR assay. [Results] CCK-8 detection indicated that the cell proliferation on the porous Ta-Nb material showed no difference from that of the control group (P>0.05). SEM revealed that a large amount of cells adhered onto the surface and in the pores of the material. The number of cells on the material surface increased obviously over time. RT-PCR assay showed that with the prolonging of the time of co-culture, the expression of type-I collagen was enhanced (P<0.05), while the osteocalcin expression exhibited no significant difference (P>0.05[Conclusion] Porous Ta-Nb scaffold material can be used to promote the adhesion, growth and differentiation of osteoblasts with satisfactory cellular compatibility.


2020 ◽  
Vol 48 (7) ◽  
pp. 1647-1656 ◽  
Author(s):  
Masahiko Haneda ◽  
Muhammad Farooq Rai ◽  
Regis J. O’Keefe ◽  
Robert H. Brophy ◽  
John C. Clohisy ◽  
...  

Background: Femoroacetabular impingement (FAI) has been proposed as an etiologic factor in up to 50% of hips with osteoarthritis (OA). Inflammation is thought to be one of the main initiators of OA, yet little is known about the origin of intra-articular inflammation in FAI hips. Hypothesis: Articular cartilage from the impingement zone of patients with FAI has high levels of inflammation, reflecting initial inflammatory process in the hip. Study Design: Controlled laboratory study. Methods: Head-neck cartilage samples were obtained from patients with cam FAI (cam FAI, early FAI; n = 15), advanced OA secondary to cam FAI (FAI OA, late FAI; n = 15), and advanced OA secondary to developmental dysplasia of the hip (DDH OA, no impingement; n = 15). Cartilage procured from young adult donors (n = 7) served as control. Safranin O–stained sections were assessed for cartilage abnormality. Tissue viability was detected by TUNEL assay. Immunostaining of interleukin 1β (IL-1β), catabolic markers (matrix metalloproteinase 13 [MMP-13], a disintegrin and metalloproteinase with thrombospondin motif 4 [ADAMTS-4], aggrecan antibody to C-terminal neoepitope [NITEGE]), and an anabolic marker (type II collagen [COL2]) was performed to evaluate molecular inflammation and metabolic activity. The average percentage of immunopositive cells from the total cell count was calculated. Kruskal-Wallis test followed by Steel-Dwass post hoc test was used for multiple comparisons. Results: Microscopic osteoarthritic changes were more prevalent in cartilage of cam FAI and FAI OA groups compared with DDH OA and control groups. Cartilage in cam FAI and FAI OA groups, versus the DDH group, had higher expression of inflammatory molecules IL-1β (69.7% ± 18.1% and 72.5% ± 13.2% vs 32.7% ± 14.4%, respectively), MMP-13 (79.6% ± 12.6% and 71.4% ± 18.8% vs 38. 5% ± 13.3%), ADAMTS-4 (83.9% ± 12.2% and 82.6% ± 12.5% vs 45.7% ± 15.5%), and COL2 (93.6% ± 3.9% and 92.5% ± 5.8% vs 53.3% ± 21.0%) ( P < .001). Expression of NITEGE was similar among groups (cam FAI, 89.7% ± 7.7%; FAI OA, 95.7% ± 4.7%; DDH OA, 93.9% ± 5.2%; P = .0742). The control group had minimal expression of inflammatory markers. Inflammatory markers were expressed in all cartilage zones of early and late FAI but only in the superficial zone of the no impingement group. Conclusion: Cartilage from the impingement zone in FAI is associated with a high expression of inflammatory markers, extending throughout all cartilage zones. Clinical Relevance: Inflammation associated with FAI likely has a deleterious effect on joint homeostasis. Further clinical and translational studies are warranted to assess whether and how surgical treatment of FAI reduces molecular inflammation.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094379
Author(s):  
Yanshan Li ◽  
Yunxiuxiu Xu ◽  
Ruomei Wang ◽  
Wenxin Li ◽  
Wenguang He ◽  
...  

Objective To investigate whether the Notch–Hif-1α signaling pathway is involved in liver regeneration. Methods Rats were divided into two groups and treated with daily intraperitoneal injections of saline (control) or the gamma-secretase inhibitor, Fli-06, for 2 days. Two-thirds of the rat livers were resected and rats were later euthanized at specific time points post-resection to analyze the remnant livers. Each group's liver/body weight ratio was calculated, and immunostaining and western blotting were used to determine the cell proliferation marker, PCNA and Ki-67 expression. Real-time PCR and western blotting were used to compare the mRNA expression of Notch homolog-1 ( Notch1), hairy and enhancer of split-1 ( Hes1), and vascular endothelial growth factor ( Vegf), and the protein expression of NICD and HIF-1α, respectively. Results The liver/body weight ratios and number of Ki-67- and PCNA-positive cells were significantly lower in the experimental group than the control group, indicating lower levels of liver regeneration following the disruption of Notch signaling by Fli-06. The Hes1 and Vegf mRNA levels and NICD and HIF-1α protein expression levels were all down-regulated by Fli-06 treatment. Conclusion Notch–Hif-α signaling pathway activation plays an important role in liver regeneration, where it may contribute toward liver cell proliferation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Huacheng Hou ◽  
Ke Zheng ◽  
Guanghu Wang ◽  
Shiro Ikegawa ◽  
Minghao Zheng ◽  
...  

Autologous osteochondral transplantation (AOT) is a method for articular cartilage repair. However, several disadvantages of this method have been reported, such as transplanted cartilage degeneration and the lack of a connection between the grafted and adjacent cartilage tissues. To evaluate the effect of intra-articular administration of trichostatin A (TSA) on AOT, we conducted a case control study in a rabbit model. International Cartilage Repair Society (ICRS) macroscopic scores, the modified O’Driscoll histology scores, and real-time PCR were utilized to evaluate the results. At 4 weeks, both macroscopic and histological assessments showed that there was no significant difference between the TSA and control groups. However, the mean macroscopic and histological scores for the TSA-treated group were significantly higher than the scores for the control group at 12 weeks. TSA was shown to directly reduce collagen type II (COL2), aggrecan, matrix metalloproteinase (MMP), and a disintegrin and metalloproteinase domain with thrombospondin motifs 5 (ADAMTS-5) expression and to simultaneously repress the upregulation of MMP-3, MMP-9, and MMP-13 levels induced by interleukin 1β(IL-1β) in chondrocytes. In conclusion, TSA protects AOT grafts from degeneration, which may provide a benefit in the repair of articular cartilage injury.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Wang ◽  
Xia Guo ◽  
Mu-Qing Liu ◽  
Xiao-Yun Wang ◽  
Yong-Ping Zheng

To investigate the effect of laser acupuncture (LA) on disuse changes in articular cartilage using ultrasound biomicroscopy (UBM), Eighteen rats were randomly divided into the control group (C), the tail-suspended group (T), and the tail-suspended with LA treatment group (L). During 28-day suspension period, group L were treated with LA at acupoints on the left hindlimb while group T had a sham treatment. Ultrasound roughness index (URI), integrated reflection coefficient (IRC), integrated backscatter coefficient (IBC), cartilage thickness, and ultrasonographic score (US) of articular cartilage at patella were measured by using an ultrasound biomicroscopy system (UBS). Compared with the group C, URI significantly (P<0.01) increased by 60.9% in group T, increased by 38.1% in group L. In addition, unloading induced a significant cartilage thinning (P<0.05) in group T, whereas cartilage thickness in group L was140.22±19.61 μm reaching the level of the control group (147.00±23.99 μm). There was no significant difference in IRC, IBC, and US among the three groups. LA therapy could help to retain the quality of articular cartilage which was subjected to unloading. LA would be a simple and safe nonpharmacological countermeasure for unloading-induced osteoarthritis. The UBM system has potential to be a sensitive, specific tool for quantitative assessment of articular cartilage.


2020 ◽  
Vol 10 (5) ◽  
pp. 724-729
Author(s):  
Yaping Xu ◽  
Xiaoqin Fang ◽  
Xianjiang Wei

Objective: The present study aimed to explore the effects and related mechanism of lidocaine on human ovarian cancer cell lines. Methods: Human ovarian cancer cell lines (SKOV3 and ES-2) were treated with different concentrations of lidocaine for different time. We treated SKOV3 and ES-2 cells using lidocaine then used MTT assay and flow cytometry to detect the cell proliferation and cell apoptosis. In addition, we used western blot analysis to explore the protein expression of Bax and Bcl-2 in SKOV3 and ES-2 cells. Western blot analysis and qRT-PCR were performed for the detection of EMT markers (E-cadherin, N-cadherin). The protein expression levels of TRAF3 and p-p65 in SKOV3 and ES-2 cells were determined by Western blot analysis. Results: Compared to the control group, 0.5, 1, 5, and 10 mM of lidocaine significantly inhibited ovarian cancer cell proliferation at different time points, while 0.1 mM of lidocaine had no significant effect. 1, 5 mM of lidocaine induced the cell apoptosis, and observably reduced expression of Bcl-2 protein, but improved Bax expression markedly compared with the control group. Treatment of lidocaine increased E-cadherin expression, but decreased N-cadherin expression when compared with control group. Treatment of lidocaine increased TRAF3 protein expression, but decreased p-p65 protein expression in ES-2 and SKOV3 cells. Conclusion: We demonstrated that lidocaine inhibited cell proliferation, induced apoptosis, and inhibited EMT in ovarian cancer cells via regulating TRAF3/NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document