Effects of Ultraviolet Pretreatment on Pigment Printing of Cotton / Polyester Blend Fabric

2020 ◽  
Vol 12 (2) ◽  
pp. 161-169
Author(s):  
Ali A. Zolriasatein

Introduction: Pigments have become the largest colorant group for textile prints because pigment printing is the oldest and cheapest method. Binders are used to fix pigments to the fibers by adhesion. Pigment binders play a significant role in pigment printing because it encloses the pigment particles and adheres to the fiber. Objective: In this study, cotton/polyester blend fabrics were treated with ultraviolet light (UVB) at an air pressure of 1 atm to improve printability. Methods: To study the influence of pretreatment time, experiments were carried out at different exposure times. Untreated and UV treated fabrics were analysed by Fourier-transform infrared spectroscopy to investigate changes in the chemical composition of fabrics. It was observed that carbonyl groups were formed on the surface of UV pretreated cotton fibers. Scanning Electron Microscopy (SEM) was used to investigate the roughness and cracks on the treated fiber surface. Then, all UV treated and untreated fabrics were screen printed with different kinds of pigments. The color strength of the printed fabrics and fastness properties to washing and dry/wet rubbing were evaluated. Results: Experimental data showed that atmospheric UV pretreatment led to an increase in pigment uptake. Moreover, UV pretreated fabrics had better dry and wet rubbing fastness compared with untreated fabrics. Conclusion: The washing fastness of UV pretreated fabric showed no significant change and was comparable with that of untreated fabric. The loss in tensile strength of UV pretreated fabrics was greater than untreated samples.

2020 ◽  
Vol 49 (6) ◽  
pp. 483-489
Author(s):  
Aminoddin Haji

Purpose The dyeing of cellulosic and proteinous fibers with natural and synthetic colorants usually needs large amounts of metal salts to promote the dyeing procedure. To get rid of the necessity to use metal salts, plasma treatment and subsequent attachment of chitosan biopolymer were considered as green processes for surface functionalization of wool and cotton. The purpose of this paper is to investigate the effect of oxygen plasma treatment and attachment of chitosan on the dyeability of wool and cotton fabrics using walnut and weld as model natural dyes, as well as C.I. reactive blue 50 and C.I. acid blue 92 as model synthetic dyes. Design/methodology/approach Wool and cotton fabrics were modified with oxygen plasma and coated with chitosan solution. The un-modified and modified samples were dyed with the above-mentioned dyes under constant conditions. The color strength, color coordinates and fastness properties of the dyed samples were determined and compared. Findings The results showed that oxygen plasma treatment could improve the dyeability and fastness properties of wool and cotton fibers when dyed with all of the above-mentioned dyes. Attachment of chitosan to the plasma-treated samples significantly improved the dyeability of wool and cotton fibers with walnut, acid and reactive dyes. The fastness properties of the dyed samples were enhanced by plasma treatment and chitosan coating. Originality/value This study uses plasma treatment as an environmentally friendly pre-treatment for attachment of chitosan on wool and cotton. This process improved the dyeing properties of both fibers. The use of metal salts in not needed for dyeing of wool and cotton according to the investigated process.


2011 ◽  
Vol 236-238 ◽  
pp. 1351-1354 ◽  
Author(s):  
Xiao Lin Zhang ◽  
Ru Min Wang

Single factor experiment was used to investigate neutral deinking technology of old magazine paper (OMG) by self-compounded NTM-2 deinking agent. Olympus inverted biological microscope were used to research distribution state of ink particles in the secondary pulp before and after deinking treatment. Scanning electron microscopy (SEM) was used to analyze fiber surface changing during neutral deinking and ink particles dispersing behaviors in the paper. The results showed that NTM-2 deinking agent had a good deinking effect to OMG, optimum operation conditions of neutral deinking was NTM-2 0.5%, deinking temperature 50°C, deinking time 40min, repulper time 25s, pulp consistence 1.0%, and floatation time 6 min. Under these conditions, brightness of the deinked pulp increased 8.4%SBD, and the ink removal efficiency reached by 90%. Olympus inverted biological microscope images showed that there were a large number of ink particles in the un-treated pulp, and these ink particles integrated with fibers tightly. After treated by neutral deinking, most of ink particles were separated from the fiber, dispersed and suspended in the pulp evenly. SEM images indicated that there were little ink particles in the secondary paper, the fiber surface turned more smoother, and the clean degree would nearly corresponding to the effect of alkaline deinking.


2011 ◽  
Vol 471-472 ◽  
pp. 1095-1100 ◽  
Author(s):  
Agnes Surai Lasat ◽  
Abdan Khalina ◽  
Nor Azowa Ibrahim

Kenaf fiber was treated with alkaline to reduce lignin content and tested under Fourier transform infrared spectroscopy (FTIR). FTIR result showed that peak at 1146 cm-1 which is acetyl group of lignin was reduced in treated fiber while disappearing of carbonyl group in treated kenaf fiber at 1750cm-1 was significantly shown compared to untreated kenaf fiber. Treated fiber undergoes mechanical size decrement process by high pressure homogenizer with 500bar pressure and 60 passes. Transmission Electron microscopy (TEM) was used to determine size and distribution of fiber. Moreover, morphology of nanofiber was observed under scanning electron microscope (SEM). Nanofiber (3%, 5%, 8% and 10%) was mixed with PLA using internal mixer and then compressed with hot pressed to produce specimen for tensile test. Tensile strength and tensile modulus of nanocomposite with 10% of nanofiber increased by 30% and 85% respectively compared to pure PLA.


2020 ◽  
Vol 6 (8) ◽  
pp. 34-38
Author(s):  
N. Zhogashtiev ◽  
Y. Tashpolotov ◽  
N. Kalmurzaev

The article presents the results of a study of the surface of cotton fibers before and after thermal processing in a vacuum chamber by scanning electron microscopy. It has been established that various factors affect the structural and physicochemical properties of an ultrathin composite material based on ultra-dispersed carbon fiber. In this work, the microstructures of an ultrathin composite material obtained based on ultrafine cotton fibers were investigated and a chemical analysis of these fibers was carried out. Based on chemical analysis, it was found that the content of heat-treated cotton fiber is 98.62% during heat treatment (from 1000 to 1200 °C). Along with this, the resulting powder had carbon fibers with sizes from 2.42 to 9.18 μm, and thus ultra-thin fibers have high chemical activity. It is shown that heat treatment of the fiber leads to molecular bonding of the outer layer of the cotton fiber.


2021 ◽  
Vol 16 ◽  
pp. 155892502110438
Author(s):  
Parshuram Singh ◽  
Sapna Balayan ◽  
Rajendra Kumar Sarin ◽  
Utkarsh Jain

Fibers are the unit component for product development. They can be divided into two types: synthetic and natural fibers. Recently, emerging nanotechnology has played a vital role in advancing next-generation fabrics. The nanomaterials provide several unique properties such as higher conductivity, self-cleaning, water-resistant, and others. Owing to their advanced properties, the fabrics are being developed by coating and integrating with nanomaterials. Therefore, in the presented work two cotton samples were modified with titanium dioxide (TiO2) and zinc oxide (ZnO). These samples were further examined under various techniques including scanning electron microscopy (SEM), UV-visible spectroscopy, X-ray fluorescence (XRF), and Fourier-transform infrared spectroscopy (FTIR). Furthermore, these samples were evaluated at varying wavelengths with UV light and the obtained results demonstrated that the nano-coated fiber samples can be differentiated at 365 nm.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11527
Author(s):  
Pablo Santana ◽  
Dalila Aldana Aranda

The microstructure and nanostructure of nacre in Pteria colymbus were studied with high-resolution field emission scanning electron microscopy (FESEM). The tablets were found to be flat and polyhedral with four to eight sides, and lengths ranging from 0.6 to 3.0 µm. They consisted of nanocrystals 41 nm wide, growing in the same direction. X-ray diffraction showed the crystals to be mineral phase aragonite, which was confirmed by Raman spectroscopy. Fourier transform infrared spectroscopy identified a band at 1,786.95 cm−1 attributed to carboxylate (carbonyl) groups of the proteins present in the organic matrix as well as bands characteristic of calcium carbonate. X-ray fluorescence showed the nacre to contain 98% calcium carbonate, as well as minor elements (Si, Na, S and Sr) and trace elements (Mg, P, Cu, Al, Fe, Cl, K and Zn).


1994 ◽  
Vol 3 (4) ◽  
pp. 096369359400300
Author(s):  
G. Carotenuto ◽  
A. Gallo ◽  
L. Nicolais

The wetting kinetics of a solid surface by a molten metal decrease with increase of its roughness. The topography of the growing copper coating, produced on carbon fiber surface by electroplating from a sulphat bath, has been studied by scanning electron microscopy. The smoothes surface is produced after 200÷300 milliampere-hour of plating.


2016 ◽  
Vol 872 ◽  
pp. 211-215 ◽  
Author(s):  
Pusit Pookmanee ◽  
Atit Wannawek ◽  
Sakchai Satienperakul ◽  
Ratchadapon Putharod ◽  
Nattapol Laorodphan ◽  
...  

This research studies compositions of diatomite, leonardite and pumice for utilization appropriate to the properties of materials. Chemical compositions of these materials were characterized by X–ray fluorescence spectrometry (XRF) and energy dispersive X–ray spectrometry (EDXS). The silica was major component of these materials. The morphology was investigated by scanning electron microscopy (SEM). Diatomite was cylindrical in shape, leonardite was sheet or flake in shape and pumicewas prismatic in shape. The structure was studied by X–ray diffraction (XRD). It was found that the mineral composition of diatomite, leonardite and pumice showed cristobalite low, quartz and anorthite, respectively. The functional groups were identified by Fourier transform infraredspectrometry (FTIR). The functional group of siloxane was obtained and dominated vibration in these materials. And the vibration of carboxylic, alcoholic and carbonyl groups were obtained in leonardite.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Ali Sadeghian Maryan ◽  
Majid Montazer ◽  
Abousaid Rashidi

In this paper, nano clay as a novel garment finishing technique termed “nano-washing,” was applied to cotton denim garments and compared with conventional washing involving amylase and cellulase. Color changes of the garment samples were investigated by using a reflectance spectrophotometer and the garment surfaces were observed by Scanning Electron Microscopy. Air permeability, crease recovery angle, bending strength, abrasion resistance, thermal properties, and antibacterial activity of the treated samples were investigated and reported. It was found that treatment of denim garment with nano clay produced old look garment with soft handle, enhanced thermal and rubbing or washing fastness properties. Overall, this novel nano-washing process on the denim garment was an easy, economical, and simple method with a great deal of advantages.


Sign in / Sign up

Export Citation Format

Share Document