Research Progress on Mechanical Properties of Short Carbon Fibre/Epoxy Composites

2019 ◽  
Vol 12 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Guanghui Zhao ◽  
Jijia Zhong ◽  
Y.X. Zhang

Background: Short carbon fibre reinforced epoxy composites have many advantages such as high strength-to-weight ratio, corrosion resistance, low cost, short fabrication time and easy manufacturing. Researches on the mechanical performance of the composites are mainly carried out by means of experimental techniques and numerical calculation. Objective: The study aims to report the latest progress in the studies of mechanical properties of short carbon fibre reinforced epoxy composites. Methods: Based on recently published patents and journal papers, the experimental studies of short carbon fibre reinforced epoxy composites are reviewed and the effects of short carbon fibre on the mechanical properties of the composites are discussed. Numerical studies using representative volume element in simulating macroscopic mechanical properties of the short fibre reinforced composites are also reviewed. Finally, future research of short carbon fibre reinforced epoxy composites is proposed. Results: Experimental techniques, experimental results and numerical simulating methods are discussed. Conclusion: Mechanical properties of epoxy can be improved by adding short carbon fibres. Fiber surface treatment and matrix modification are effective in enhancing interfacial adhesion between fiber and matrix, and as a result, better mechanical performance is achieved. Compared to the studies on equivalent mechanical properties of the composites, researches on the micro-mechanism of interaction between fiber and matrix are still in infancy due to the complexity of both the internal structure and reinforcing mechanism.

Author(s):  
M. Ashok Kumar ◽  
T. Maruthi Chowdary ◽  
K. Chandra Sekhar Balaji ◽  
E. Dhanunjaya Goud ◽  
S. Nagaraju ◽  
...  

This paper presents the performance of short carbon fibre (CF) reinforced and filled with sawdust (SD) hybrid epoxy composites were evaluated. The results showed that hybridisation of carbon fibre and sawdust was in similarity to EP/CF hybrid composites. Effect of fibre orientation in matrix and the analysis and fracture surface was undertaken. The mechanical properties of injection moulded, chopped carbon fibre/sawdust/epoxy hybrid composites were investigated by considering the effect of hybridisation by these two fillers. It was observed that the tensile, flexural, and impact properties of the filled epoxy were higher than those of unfilled epoxy. The effect of filler on epoxy matrix subjected to the tensile strength and modulus was studied and compared with the rule of hybrid mixtures. The effect of filler on epoxy matrix subjected to the tensile strength and modulus was studied and compared with the rule of mixture. The actual results are marginally low as compared with the values obtained by the rule of hybrid mixtures (RoHM).


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


2018 ◽  
Vol 225 ◽  
pp. 01022
Author(s):  
Falak O. Abasi ◽  
Raghad U. Aabass

Newer manufacturing techniques were invented and introduced during the last few decades; some of them were increasingly popular due to their enhanced advantages and ease of manufacturing over the conventional processes. Polymer composite material such as glass, carbon and Kevlar fiber reinforced composite are popular in high performance and light weight applications such as aerospace and automobile fields. This research has been done by reinforcing the matrix (epoxy) resin with two kinds of the reinforcement fibers. One weight fractions were used (20%) wt., Epoxy reinforced with chopped carbon fiber and second reinforcement was epoxy reinforced with hybrid reinforcements Kevlar fiber and improved one was the three laminates Kevlar fiber and chopped carbon fibers reinforced epoxy resin. After preparation of composite materials some of the mechanical properties have been studied. Four different fiber loading, i.e., 0 wt. %, 20wt. % CCF, 20wt. % SKF, AND 20wt. %CCF + 20wt. % SKF were taken for evaluating the above said properties. The thermal and mechanical properties, i.e., hardness load, impact strength, flexural strength (bending load), and thermal conductivity are determined to represent the behaviour of composite structures with that of fibers loading. The results show that with the increase in fiber loading the mechanical properties of carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, flexural strength test, Impact test, and Brinell hardness test the results show the flexural strength, impact strength of the hybrid composites values were increased with existence of Kevlar fibers, while the hardness was decrease. But the reinforcement with carbon fibers increases the hardness and decreases other tests.


2020 ◽  
Vol 25 (4) ◽  
pp. 203-213
Author(s):  
B.H. Abed ◽  
K.J. Jadee ◽  
A.A. Battawi

AbstractThe creep test is one of the important approaches to determining some mechanical properties of composite materials. This study was carried out to investigate the creep behaviour of an epoxy composite material that was reinforced with Y2O3 powder at weight ratios of 2%, 7%, 12%, 17% and 22%. Each volume ratio was subjected to five loads over the range of 1N to5N at a constant temperature of 16 ± 2°C. In this work, creep behaviour, stress and elasticity modulus were studied through experimental and numerical analyses. Results showed that increasing the weight ratio of Y2O3 powder enhanced creep characteristics.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


Sign in / Sign up

Export Citation Format

Share Document