Fe3O4@L-arginine as a Reusable Catalyst for the Synthesis of Polysubstituted 2-Pyrrolidinones

2019 ◽  
Vol 6 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Mohammad Ali Ghasemzadeh ◽  
Mohammad Hossein Abdollahi-Basir ◽  
Zahra Elyasi

Background: This research introduces an effective and green method for the synthesis of polysubstituted 2-pyrrolidinone derivatives as biologically-active heterocyclic compounds using multi- component reactions using Fe3O4@L-arginine as a reusable organocatalyst. Material and Method: The Fe3O4@L-arginine nanoparticles were prepared by a facile one-step approach and the structure elucidation of the magnetic nanocatalyst has been done using various spectroscopy techniques. Results: L-arginine-functionalized magnetite nanoparticles were obtained with particle sizes around 10 nm. Fe3O4@L-arginine exhibited strong catalytic activity to obtain some polysubstituted 2- pyrrolidinone. Conclusion: The considerable advantages of this research are short reaction times, excellent yields, simple workup procedure and reusability of the nanocatalyst which is in good agreement with green chemistry disciplines. The study on the reusability of the Fe3O4@L-arginine nanoparticles showed that the recovered catalyst could be reused six consecutive times.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Marthe Carine Djuidje Fotsing ◽  
Dieudonné Njamen ◽  
Zacharias Tanee Fomum ◽  
Derek Tantoh Ndinteh

Abstract Cyclic and polycyclic compounds containing moieties such as imidazole, pyrazole, isoxazole, thiazoline, oxazine, indole, benzothiazole and benzoxazole benzimidazole are prized molecules because of the various pharmaceutical properties that they display. This led Prof. Landor and co-workers to engage in the synthesis of several of them such as alkylimidazolenes, oxazolines, thiazolines, pyrimidopyrimidines, pyridylpyrazoles, benzoxazines, quinolines, pyrimidobenzimidazoles and pyrimidobenzothiazolones. This review covers the synthesis of biologically active heterocyclic compounds by the Michael addition and the double Michael addition of various amines and diamines on allenic nitriles, acetylenic nitriles, hydroxyacetylenic nitriles, acetylenic acids and acetylenic aldehydes. The heterocycles were obtained in one step reaction and in most cases, did not give side products. A brief discussion on the biological activities of some heterocycles is also provided.


2020 ◽  
Vol 20 (9) ◽  
pp. 5433-5444
Author(s):  
Farhad Shirini ◽  
Fatemeh Kamali

A green magnetic nanocatalyst is developed by immobilization of Fe3O4 on Graphitic carbon nitride (g-C3N4) support for the efficacious synthesis of 5-arylidenepyrimidine-2,4,6-(1H,3H,5H)-trione and pyrano-pyrimidinone derivatives in aqueous media. The most momentous features of the present protocol are the simple preparation of the catalyst, mild reaction conditions, short reaction times and high yields of the products. Moreover, the magnetic nanocatalyst Fe3O4/g-C3N4 can be recycled effectively and reused several times, without a significant loss in reactivity.


BMC Chemistry ◽  
2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Mohammad Ali Ghasemzadeh ◽  
Boshra Mirhosseini-Eshkevari ◽  
Mohammad Hossein Abdollahi-Basir

Abstract The synthesized Fe3O4@l-arginine showed strong catalytic performance in the one-pot synthesis of spiropyranopyrazoles via the reactions of hydrazines, β-keto esters, isatins, and malononitrile or ethyl cyanoacetate under solvent-free conditions. The biologically active heterocyclic compounds including spiropyranopyrazole derivatives were efficiently synthesized in short reaction times and excellent yields in the presence of Fe3O4/l-arginine at room temperature. The highlighted features of the Fe3O4@l-arginine nanocomposite are highly stable, easy to separate, low loading, cost-effective with easy preparation and reusability of the catalyst. The heterogeneous nanocomposite was fully characterized by SEM, EDX, FT-IR, XRD and TEM analysis.


2020 ◽  
Vol 18 (1) ◽  
pp. 648-662
Author(s):  
Shenghao Jiang ◽  
Macheng Shen ◽  
Fatima Rashid Sheykhahmad

AbstractIn this study, Fe3O4@urea/HITh-SO3H MNPs as a new, efficient, and recyclable solid acid magnetic nanocatalyst was synthesized and characterized using various methods including Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometry, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction. After the characterization of this new magnetic nanocatalyst, it was efficiently utilized for the promotion of the one-pot synthesis of 7-aryl-8H-benzo[h]indeno[1,2-b]quinoline-8-one and indeno[2′,1′:5,6]pyrido[2,3-d]pyrimidine derivatives via three-component reaction of the 1,3-indanedione, aldehyde, and 1-naphthylamine/1,3-dimethyl-6-aminouracil under solvent-free conditions at 80°C. The procedure gave the desired heterocyclic structures in high-to-excellent yields and short reaction times. Also because of the magnetic nature of the nanocatalyst, it can be separated with an external magnetic field and reused at least six runs without any considerable decrease in the catalytic behavior.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


Author(s):  
Harish Rajak ◽  
Murli Dhar Kharya ◽  
Pradeep Mishra

There are vast numbers of pharmacologically active heterocyclic compounds in regular clinical use. The presence of heterocyclic structures in diverse types of compounds is strongly indicative of the profound effects such structure exerts on physiologic activity, and recognition of this is abundantly reflected in efforts to find useful synthetic drugs. The 1,3,4-oxadiazole nucleus has emerged as one of the potential pharmacophore responsible for diverse pharmacological properties. Medical Literature is flooded with reports of a variety of biological activities of 2,5-Disubstituted-1,3,4-oxadiazoles. The present work is an attempt to summarize and enlist the various reports published on biologically active 2,5-disubstituted-1,3,4-oxadiazoles.


2020 ◽  
Vol 26 (41) ◽  
pp. 7337-7371 ◽  
Author(s):  
Maria A. Chiacchio ◽  
Giuseppe Lanza ◽  
Ugo Chiacchio ◽  
Salvatore V. Giofrè ◽  
Roberto Romeo ◽  
...  

: Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.


2019 ◽  
Vol 22 (2) ◽  
pp. 123-128
Author(s):  
Setareh Habibzadeh ◽  
Hassan Ghasemnejad-Bosra ◽  
Mina Haghdadi ◽  
Soheila Heydari-Parastar

Background: In this study, we developed a convenient methodology for the synthesis of coumarin linked to pyrazolines and pyrano [2,3-h] coumarins linked to 3-(1,5-diphenyl-4,5- dihydro-1H-pyrazol-3-yl)-chromen-2-one derivatives using Chlorosulfonic acid supported Piperidine-4-carboxylic acid (PPCA) functionalized Fe3O4 nanoparticles (Fe3O4-PPCA) catalyst. Materials and Methods:: Fe3O4-PPCA was investigated as an efficient and magnetically recoverable Nanocatalyst for the one-pot synthesis of substituted coumarins from the reaction of coumarin with a variety of aromatic aldehydes in high to excellent yield at room temperature under solvent-free conditions. The magnetic nanocatalyst can be easily recovered by applying an external magnet device and reused for at least 10 reaction runs without considerable loss of reactivity. Results and Conclusion: The advantages of this protocol are the use of commercially available materials, simple and an inexpensive procedure, easy separation, and an eco-friendly procedure, and it shows good reaction times, good to high yields, inexpensive and practicability procedure, and high efficiency.


2017 ◽  
Vol 14 (6) ◽  
pp. 883-903 ◽  
Author(s):  
Boppudi Hari Babu ◽  
Gandavaram Syam Prasad ◽  
Chamarthi Naga Raju ◽  
Mandava Venkata Basaveswara Rao

Background: Michaelis–Arbuzov reaction has played a key role for the synthesis of dialkyl or diaryl phosphonates by reacting various alkyl or aryl halides with trialkyl or triaryl phosphite. This reaction is very versatile in the formation of P-C bond from the reaction of aliphatic halides with phosphinites or phosphites to yield phosphonates, phosphinates, phosphine oxides. The Arbuzov reaction developed some methodologies, possible mechanistic pathways, selectivity, potential applications and biologically active various phosphonates. Objective: The synthesis of phosphonates via Michaelis–Arbuzov reaction with many new and fascinating methodologies were developed and disclosed in the literature, and these are explored in this review. Conclusion: This review has discussed past developments and vast potential applications of Arbuzov reaction in the synthesis of organophosphonates. As presented in this review, various synthetic methodologies were developed to prepare a large variety of phosphonates. Improvements in the reaction conditions of Lewis-acid mediated Arbuzov rearrangement as well as the development of MW-assisted Arbuzov rearrangement were discussed. Finally, to achieve high selectivities and yields, fine-tuning of reaction conditions including solvent type, temperature, and optimal reaction times to be considered.


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Karsten Krohn ◽  
Stephan Cludius-Brandt ◽  
Barbara Schulz ◽  
Mambatta Sreelekha ◽  
Pottachola Mohamed Shafi

Several biologically active alkaloids (1-4, 6), including a new quinazoline-6-carboxylic acid (1), were isolated from the medicinal plant Zanthoxylum rhetsa, an evergreen tree, native to subtropical areas. Whereas the pharmacological properties of the plant extract and single constituents have been widely tested, we now show that all of the metabolites have antialgal activities, all but 6 are antibacterial, and 6 and the reduction product 5 (derived from 4) are also antifungal.


Sign in / Sign up

Export Citation Format

Share Document