A comprehensive insight on self emulsifying drug delivery systems

Author(s):  
Renu Kadian ◽  
Arun Nanda

Background: The oral route is a highly recommended route for the delivery of a drug. But most lipophilic drugs are difficult to deliver via this route due to their low aqueous solubility. Selfemulsifying drug delivery systems (SEDDS) have emerged as a potential approach of increasing dissolution of a hydrophobic drug due to spontaneous dispersion in micron or nano sized globules in the GI tract under mild agitation. Objective: The main motive of this review article is to describe the mechanisms, advantages, disadvantages, factors affecting, effects of excipients, possible mechanisms of enhancing bioavailability, and evaluation of self-emulsifying drug delivery systems. Result: Self emulsifying systems incorporate the hydrophobic drug inside the oil globules, and a monolayer is formed by surfactants to provide the low interfacial tension, which leads to improvement in the dissolution rate of hydrophobic drugs. The globule size of self-emulsifying systems depends upon the type and ratio of excipients in which they are used. The ternary phase diagram is constructed to find out the range of concentration of excipients used. This review article also presents recent and updated patents on self-emulsifying drug delivery systems. Self-emulsifying systems have the ability to enhance the oral bioavailability and solubility of lipophilic drugs. Conclusion: This technique offers further advantages such as bypassing the first pass metabolism via absorption of drugs through the lymphatic system, easy manufacturing, reducing enzymatic hydrolysis, inter and intra subject variability, and food effects.

Author(s):  
Amol S Deshmukh

Oral route has always been preferred route for formulators and has dominated over other routes of administrations. But major problem encountered in oral formulations (as estimated more than 50 % of oral formulations are found to be poorly aqueous soluble), is low bioavailability, giving rise to further problems like, high inter and intra subject variability, lack of dose uniformity and finally leading to therapeutic failure. Approximately 40% of new chemical entities exhibit poor aqueous solubility and present a major challenge to modern drug delivery system, because of their low bioavailability. Particularly for BCS class II substances, the bioavailability may be enhanced by increasing the solubility and dissolution rate of the drug in the gastro-intestinal fluids. The newer and novel technologies developed in recent year for troubleshooting such above problems. This review describes an overview of SEDDS as a capable approach to effectively capture the problem of poorly soluble molecules and give the novel approaches for evaluation of the SEDDS. Self-emulsifying drug delivery systems (SEDDS) are isotropic mixtures of drug, lipids and surfactants, usually with one or more hydrophilic co-solvents or co-emulsifiers.  


2020 ◽  
Vol 10 (3) ◽  
pp. 231-240
Author(s):  
Chukwuma Agubata

The oral route of drug delivery is commonly utilized for administration of medicines and is particularly preferred for the treatment of many chronic diseases which require continuous ingestion over a reasonably prolonged period of time. However the oral delivery of lipophilic drugs presents a major obstacle because of their low aqueous solubility. The aqueous solubility of a drug is a crucial determinant of its dissolution rate, absorption and bioavailability. Drugs with relatively high intrinsic lipophilicity can be dissolved in appropriate mixtures of oils/lipids, surfactants, cosolvents which can rapidly form oil-in-water (o/w) fine emulsions when dispersed in aqueous phase under mild agitation or mixing. These isotropic self-emulsifying formulations or self-emulsifying drug delivery systems are effective for delivery of poorly soluble, lipophilic drugs by dispersing the drugs within fine oil droplets in emulsions and this solubilization of drugs can then improve its absorption, bioavailability and therapeutic efficacy. The present paper reviews the concept, design, formulation, characterization and applications of self-emulsifying formulations. Keywords: Self-Emulsifying Formulations, lipophilicity, emulsions


Author(s):  
Amoolya Chennuri ◽  
D. Prasanthi

Self-emulsifying drug delivery systems are a promising aptemsproach for the formulation of drug compounds with poor aqueous solubility. The main objective of this work was to formulate liquid and solid-self emulsifying drug delivery systems for poorly soluble aripiprazole. Aripiprazole is an atypical anti-psychotic drug used in the management of schizophrenia. The maximum solubility of aripiprazole was found in oleic acid (oil), Tween 80 (surfactant) and Transcutol P (co-surfactant). The L-SMEDDS were formulated in different ratios of oil: s-mix (surfactant: co-surfactant) from 1:9 to 9:1. For the formulation of stable SMEDDS, micro-emulsion region was identified by constructing pseudo-ternary phase diagram by phase titration method. The optimized F4 formulation was at the ratio of 4 (oil): 6 (s-mix). In-vitro drug release of F4 was significantly higher (99.89%) when compared to the pure drug (43.63%) in 1 hour. The F4 formulation had a droplet size of 115.9 nm and zeta potential of -24.9 mV. The pre-compression and post-compression parameters of the optimized S-SMEDDS formulation (SS1) containing Neusilin US2 as solid adsorbent were within the limits as per the official requirements of the Pharmacopoeia. SS1 formulation showed a better drug release (97% in 20 minutes) when compared to the marketed drug (59.75%) and pure drug (19.77%). In conclusion, this study illustrated that adsorption to solid carrier technique could be a useful method to prepare the solid SMEDDS tablets from liquid SMEDDS, which can enhance the solubility and improve the in-vitro drug release of aripiprazole.


2019 ◽  
Vol 15 (6) ◽  
pp. 576-588 ◽  
Author(s):  
Beibei Yan ◽  
Yu Gu ◽  
Juan Zhao ◽  
Yangyang Liu ◽  
Lulu Wang ◽  
...  

: According to the drug discovery, approximately 40% of the new chemical entities show poor bioavailability due to their low aqueous solubility. In order to increase the solubility of the drugs, self-micro emulsifying drug delivery systems (SMEDDS) are considered as an ideal technology for enhancing the permeability of poorly soluble drugs in GI membranes. The SMEDDS are also generally used to enhance the oral bioavailability of the hydrophobic drugs. At present, most of the self-microemulsion drugs are liquid dosage forms, which could cause some disadvantages, such as the low bioavailability of the traditional liquid SMEDDS. Therefore, solid self-micro emulsifying drug delivery systems (S-SMEDDS) have emerged widely in recent years, which were prepared by solidifying a semi-solid or liquid self-emulsifying (SE) ingredient into a powder in order to improve stability, treatment and patient compliance. The article gives a comprehensive introduction of the study of SMEDDS which could effectively tackle the problem of the water-insoluble drug, especially the development of solidification technology of SMEDDS. Finally, the present challenges and the prospects in this field were also discussed.


2017 ◽  
Vol 6 (7) ◽  
pp. 5426 ◽  
Author(s):  
Hiren J. Patel ◽  
Vaishnavi P. Parikh

The pharmaceutical industry has faced several marked challenges in order to bring new chemical entities (NCEs) into the market over the past few decades. Various novel drug delivery approaches have been used as a part of life cycle management from which Osmotic drug delivery systems look the most promising one. After discussing the history of osmotic pump development, this article looks at the principles, advantages and disadvantages of osmotic drug delivery systems. Then, the basic components of osmotic pump and factors affecting the design of oral osmotic drug delivery systems are discussed in detail. In the later part of the manuscript, various types of osmotic pumps available in the market and evaluation methods for osmotic drug delivery systems are discussed in detail.


Author(s):  
Sunitha M Reddy ◽  
Sravani Baskarla

This article describes current strategies to enhance aqueous solubility and dissolution rate of poor soluble drugs. Most drugs in the market are lipophilic with low or poor water solubility. There are various methods to enhance solubility: co-solvency, particle size reduction, salt formation and Self Nanoemulsifying drug delivery systems, SEDDS is a novel approach to enhance solubility, dissolution rate and bioavailability of drugs. The study involves formulation and evaluation of solid self-Nano emulsifying drug delivery system (S-SNEDDS) to enhance aqueous solubility and dissolution rate. Oral route is the most convenient route for non-invasive administration. S-SNEDDS has more advantages when compared to the liquid self-emulsifying drug delivery system. Excipients were selected depends upon the drug compatibility oils, surfactants and co surfactants were selected to formulate Liquid SNEDDS these formulated liquid self-nano emulsifying drug delivery system converted into solid by the help of porous carriers, Melted binder or with the help of drying process. Conversion process of liquid to solid involves various techniques; they are spray drying; freeze drying and fluid bed coating technique; extrusion, melting granulation technique. Liquid SNEDDS has a high ability to improve dissolution and solubility of drugs but it also has disadvantages like incompatibility, decreased drug loading, shorter shelf life, ease of manufacturing and ability to deliver peptides that are prone to enzymatic hydrolysis.  


Author(s):  
Pandey Swarnima ◽  
Sushant Kumar

The paper is aimed to provide a comprehensive review on nanoparticles, methods of preparation, applications in drug delivery. In recent years, there has been an exponential interest within the development of novel drug delivery systems using nanoparticles. Nanoparticles offers significant advantages over the conventional drug delivery in terms of high stability, high specificity, high drug carrying capacity, ability for controlled release, possibility to use in several route of administration and therefore the capability to deliver both hydrophilic and hydrophobic drug molecules. This review focuses on classification, methods of preparation, characterization, application, advantages of nanoparticles and health perspectives.


2021 ◽  
Author(s):  
Alla Krasnoshtanova ◽  
Anastasiya Bezyeva

"The oral route of drug inclusion is the most convenient for the patient. In addition to ease of use, this method of drug inclusion has such advantages as non-invasiveness of inclusion, absence of complications during injection; comparative safety for the organism due to the passage of the active substance and auxiliary compounds through the gastrointestinal tract; the possibility of introducing larger doses of the drug at one time. However, despite the obvious advantages, the oral route of inclusion has a number of significant disadvantages that significantly limit its use for a number of drugs. Among them are: relatively slow therapeutic action of the drug with this route of inclusion; the aggressive effect of a number of drugs (for example, antibiotics) on the gastrointestinal tract; low bioavailability of a number of substances (especially high molecular weight hydrophilic compounds), caused by poor permeability of the intestinal epithelium for hydrophilic and large molecules, as well as enzymatic and chemical degradation of the active substance in the gastrointestinal tract. There are various approaches used in the development of oral drug delivery systems. In particular, for the targeted delivery of drugs, it is proposed to use nano- and microcapsules with mucoadhesive properties. Among the polymers used for the synthesis of these microparticles, it is preferable to use pH-dependent, gelable biopolymers that change their structure depending on the acidity of the environment. Microcapsules obtained from compounds with the above properties are capable of protecting the active substance (or from the active substance) in the stomach environment and ensuring its release in the intestine. These properties are possessed by such polysaccharides as alginate, pectin, carrageenan, xylan, etc. The listed biopolymers are non-toxic, biocompatible, and biodegradable, which makes microparticles containing these polysaccharides promising as oral drug delivery systems. To impart mucoadhesive properties to nanoparticles, complexes of the listed polymers with chitosan are used. In this research, pectin, a polysaccharide formed mainly by residues of galacturonic acid, was used as a structural polymer. The concentrations of substances in the initial solutions were selected that were optimal for the synthesis of microcapsules. The main parameters for evaluating the resulting microparticles were the size of the capsules (less than 1 μm for oral inclusion), the zeta-potential, showing the tendency of the microparticles to stick together, and the completeness of the binding of the microparticles to chitosan. It was found that the optimal solutions for the synthesis of microparticles are: 15.7 ml of a solution of pectin 0.093% by weight, 3.3 ml of a solution of chitosan 0.07% by weight and 1.0 ml of a solution of CaCl2 20 mM. The diameter of the microparticles obtained by this method was 700-800 nm, and the value of their zetta-potential, equal to - (34 ± 3) mV, does not cross the particle adhesion threshold. It was also found that the synthesis of microparticles at these concentrations of calcium chloride provides the most complete binding of chitosan to their surface, which increases the mucoadhesive properties of microparticles."


2017 ◽  
Vol 4 (2) ◽  
pp. 10 ◽  
Author(s):  
Harshil P. Shah ◽  
Shailesh T. Prajapati ◽  
C. N. Patel

Despite the extensive advancements in the field of drug delivery, the oral route remains the favorable route for administration of therapeutic actives. A success of oral controlled drug delivery systems is associated with reduced dosing frequency, decreased fluctuation in plasma drug concentration profile along with improved patient compliance. However, they are also associated with challenges like shorter gastric residence time, unpredictable gastric emptying and poor bioavailability for some molecules. This has initiated tremendous advancements in the field of gastro-retention to achieve controlled release of drugs along with improved bioavailability of drugs with narrow absorption window as well as localized action in the stomach and upper part of GIT. In present review, efforts have been envisaged to summarize our current understanding in the field of gastro-retention and their in vitro as well as in vivo characterization. Present review also highlights commercially utilized gastro-retentive technologies and some recently granted US patents in the field of GRDDS.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1803
Author(s):  
Vivek Puri ◽  
Ameya Sharma ◽  
Pradeep Kumar ◽  
Inderbir Singh

Biopolymers are extensively used for developing drug delivery systems as they are easily available, economical, readily modified, nontoxic, biodegradable and biocompatible. Thiolation is a well reported approach for enhancing mucoadhesive and mechanical properties of polymers. In the present review article, for the modification of biopolymers different thiolation methods and evaluation/characterization techniques have been discussed in detail. Reported literature on thiolated biopolymers with enhanced mechanical and mucoadhesive properties has been presented conspicuously in text as well as in tabular form. Patents filed by researchers on thiolated polymers have also been presented. In conclusion, thiolation is an easily reproducible and efficient method for customization of mucoadhesive and mechanical properties of biopolymers for drug delivery applications.


Sign in / Sign up

Export Citation Format

Share Document