scholarly journals Immunomodulator Testing on Ethanol Extract of Gynura procumbens Leaves to Mus musculus Adaptive Immune System: in Vitro Study

2014 ◽  
Vol 4 (1) ◽  
pp. 10-14 ◽  
Author(s):  
Dinia Rizqi Dwijayanti ◽  
◽  
Muhaimin Rifa'i
2020 ◽  
Author(s):  
David A Swan ◽  
Morgane Rolland ◽  
Joshua Herbeck ◽  
Joshua T Schiffer ◽  
Daniel B Reeves

AbstractModern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic (wi-phy) models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The most parsimonious and accurate model required no positive selection, suggesting that the host adaptive immune system reduces viral load, but does not drive observed viral evolution. Rather, random genetic drift primarily dictates fitness changes. These results hold during early infection, and even during chronic infection when selection has been observed, viral fitness distributions are not largely different from in vitro distributions that emerge without adaptive immunity. These results highlight how phylogenetic inference must consider complex viral and immune-cell population dynamics to gain accurate mechanistic insights.One sentence summaryThrough the lens of a unified population and phylodynamic model, current data show the first wave of HIV mutations are not driven by selection by the adaptive immune system.


Author(s):  
Royan Diana ◽  
Hedijanti Joenoes ◽  
Ariadna A Djais

Objective: This study aimed to compare the effect of Curcuma xanthrorrhiza ethanol extract to the viability of Streptococcus mutans and Aggregatibacter  actinomycetemcomitans using single- and dual-species biofilm at different phases of formation.Methods: Biofilm models were incubated for 4, 12, and 24 hrs, then exposed to the extract at a concentration of 0.525%.Results: The viability of the single-species S. mutans biofilm was low (p<0.05), and no significant difference (p>0.05) was found between singlespeciesA. actinomycetemcomitans and dual-species biofilm.Conclusions: Curcuma xanthorrhiza ethanol extract is more effective for decreasing the viability of single-species S. mutans biofilm.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Ilse Van Brussel ◽  
Zwi N. Berneman ◽  
Nathalie Cools

Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.


Author(s):  
Edze Westra ◽  
Bruce Levin

AbstractArticles on CRISPR commonly open with some variant of the phrase ‘these short-palindromic repeats and their associated endonucleases (Cas) are an adaptive immune system that exists to protect bacteria and archaea from viruses and infections with other mobile genetic elements’. There is an abundance of genomic data consistent with the hypothesis that CRISPR plays this role in natural populations of bacteria and archaea, and experimental demonstrations with a few species of bacteria and their phage and plasmids show that CRISPR-Cas systems can play this role in vitro. Not at all clear are the ubiquity, magnitude and nature of the contribution of CRISPR-Cas systems to the ecology and evolution of natural populations of microbes, and the strength of selection mediated by different types of phage and plasmids to the evolution and maintenance of CRISPR-Cas systems. In this perspective, with the aid of heuristic mathematical-computer simulation models, we explore the a priori conditions under which exposure to lytic and temperate phage and conjugative plasmids will select for and maintain CRISPR-Cas systems in populations of bacteria and archaea. We review the existing literature addressing these ecological and evolutionary questions and highlight the experimental and other evidence needed to fully understand the conditions responsible for the evolution and maintenance of CRISPR-Cas systems and the contribution of these systems to the ecology and evolution of bacteria, archaea and the mobile genetic elements that infect them.SignificanceThere is no question about the importance and utility of CRISPR-Cas for editing and modifying genomes. On the other hand, the mechanisms responsible for the evolution and maintenance of these systems and the magnitude of their importance to the ecology and evolution of bacteria, archaea and their infectious DNAs, are not at all clear. With the aid of heuristic mathematical – computer simulation models and reviews of the existing literature, we raise questions that have to be answered to elucidate the contribution of selection – mediated by phage and plasmids – to the evolution and maintenance of this adaptive immune system and its consequences for the ecology and evolution of prokaryotes and their viruses and plasmids.


2019 ◽  
Author(s):  
Amalia Sintou ◽  
Sarah el Rifai ◽  
Catherine Mansfield ◽  
Jose L. Sanchez Alonso ◽  
Stephen M. Rothery ◽  
...  

AbstractAlthough clinicians and researchers have long appreciated the detrimental effects of excessive acute inflammation after myocardial infarction (MI), less is known about the role of the adaptive immune system in MI complications including heart failure. Yet, abundant cardiac self-antigens released from necrotic cardiomyocytes in a highly inflammatory environment are likely to overwhelm peripheral mechanisms of immunological self-tolerance and adaptive auto-reactivity against the heart may cause ongoing tissue destruction and exacerbate progression to chronic heart failure (CHF).Here, we confirm that the adaptive immune system is indeed persistently active in CHF due to ischemic heart disease triggered by MI in rats. Heart draining mediastinal lymph nodes contain active secondary follicles with mature class-switched IgG2a positive cells, and mature anti-heart auto-antibodies binding to cardiac epitopes are still present in serum as late as 16 weeks after MI. When applied to healthy cardiomyocytes in vitro, humoral factors present in CHF serum promoted apoptosis, cytotoxicity and signs of hypertrophy.These findings directly implicate post-MI autoimmunity as an integral feature of CHF progression, constituting a roadblock to effective regeneration and a promising target for therapeutic intervention.


2017 ◽  
Author(s):  
Grant C. O’Connell ◽  
Connie S. Tennant ◽  
Noelle Lucke-Wold ◽  
Yasser Kabbani ◽  
Abdul R. Tarabishy ◽  
...  

AbstractCD163 is a scavenger receptor expressed on innate immune cell populations which can be shed from the plasma membrane via the metalloprotease ADAM17 to generate a soluble peptide with lympho-inhibitory properties. The purpose of this study was to investigate CD163 as a possible effector of stroke-induced adaptive immune system suppression. Liquid biopsies were collected from ischemic stroke patients (n=39), neurologically asymptomatic controls (n=20), and stroke mimics (n=20) within 24 hours of symptom onset. Peripheral blood ADAM17 activity and soluble CD163 levels were elevated in stroke patients relative to non-stroke control groups, and negatively associated with post-stroke lymphocyte counts. Subsequent in vitro experiments suggested that this stroke-induced elevation in circulating soluble CD163 likely originates from activated monocytic cells, as serum from stroke patients stimulated ADAM17-dependant CD163 shedding from healthy donor-derived monocytes. Additional in vitro experiments demonstrated that stroke-induced elevations in circulating soluble CD163 can elicit direct suppressive effects on the adaptive immune system, as serum from stroke patients inhibited the proliferation of healthy donor-derived lymphocytes, an effect which was attenuated following serum CD163 depletion. Collectively, these observations provide novel evidence that the innate immune system employs protective mechanisms aimed at mitigating the risk of post-stroke autoimmune complications driven by adaptive immune system overactivation, and that CD163 is key mediator of this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document