scholarly journals Karakterisasi Biogas Hasil Pemurnian dengan Down-Up Purifier Termodifikasi

2021 ◽  
Vol 12 (1) ◽  
pp. 171
Author(s):  
Abdul Mukhlis Ritonga ◽  
Masrukhi Masrukhi ◽  
Azis Imam Safi’i

Biogas is a combustible gas produced from the fermentation process of organic materials by anaerobic bacteria. Biogas can be made by using a digester. A digester is a place where the process of decomposing organic matter by bacteria. The result of biogas still contains impurity gases, so that the quality of biogas is not good. Therefore, efforts to filter the gas are necessary. The purifier is a device to filter a gas. The use of purifiers in a series of digester installations aims to filter out unnecessary gases. The purpose of this research is to design a down-up purifier type biogas purification plant, to determine the changes in substrate characteristics during fermentation and conduct a gas quality test after purification. The results showed that the biogas installation type down-up purifier was designed and assembled using 150 liter drums for gas digesters and reservoirs, 1/2 inch hoses for connecting, 2 purifiers for purification and activated charcoal adsorbents. The C/N ratio is 36.37, an average substrate temperature of 28.62<sup>o</sup>C and an average pH of 5.9. Initial and final Biological Oxygen Demand (BOD) values are 960.12 mg/l and 9.312.53 mg/l. The initial and final Chemical Oxygen Demand (COD) values are 313,500.00 mg/l and 29,100.00 mg/l. Then Total Solid (TS) decreased by 1.45% and Volatile Solid (VS) increased by 0.21%. The use of activated charcoal adsorbents in the two purifiers can reduce CO<sub>2</sub> gas content by 83.79% in biogas with the most optimal purification time of 60 minutes.

2021 ◽  
Vol 14 (1) ◽  
pp. 1-14
Author(s):  
Abdul Mukhlis Ritonga ◽  
Masrukhi Masrukhi ◽  
Ahmad Mafrukhi

Abstrak. Biogas merupakan gas yang dihasilkan dari bahan organik melalui proses fermentasi. Energi yang terkandung dalam biogas tergantung dari konsentrasi metana (CH4). Semakin tinggi kandungan metana maka semakin besar kandungan energi pada biogas. Salah satu cara untuk meningkatkan kandungan gas metana pada biogas serta dapat menurunkan gas-gas pengotor seperti CO2, dan gas-gas lain yang tidak terpakai dengan pemurnian menggunakan purifier yang telah di isi adsorben, pada penelitian ini adsorben yang digunakan yaitu arang aktif dan zeolit. Variabel yang diukur dalam penelitian ini yaitu C/N rasio, pH, suhu, total solid (TS), volatile solid (VS), Biochemical Oxygen Demand (BOD) dan Chemical Oxygen Demand (COD) yang berpengaruh dalam produksi gas metan. Kadar  CH4 dan CO2 setelah dimurnikan, dan waktu optimal untuk proses pemurnian biogas, perlakuan yang diberikan menggunakan 3 waktu pengujian, yaitu 30, 60, dan 90 menit. Percobaan dilakukan pengulangan sebanyak tiga kali. Hasil penelitian menunjukkan bahwa rasio C/N sebesar 20,36 dengan suhu rata-rata 25,1oC dan pH rata-rata 6. Nilai BOD awal dan akhir masing-masing sejumlah 77800,86 mg/l dan 53002,42 mg/l dan COD awal dan akhir masing-masing sejumlah 59800 mg/l dan 36000 mg/l. TS dan VS masing masing mengalami penurunan sebesar 20,99% dan 17,93%. Penggunaan adsorben arang aktif dan zeolit dapat meningkatkan kandungan gas CH4 sebesar 136,5% dan menurunkan kandungan gas CO2 sebesar 64% pada biogas. Lama waktu pengujian mampu meningkatkan konsentrasi CH4 dan menurunkan kandungan gas CO2 dengan waktu paling optimal yaitu 30 menit.Increasing Quality Of Biogas With Purification Proses On Double Arranged Series Purifier Using Activated Charcoal And Zeolit AdsorbentAbstract. The quality of biogas is determined by the methane (CH4) content in the biogas. A good biogas is indicated by its high methane content. One way to increase the methane gas content in biogas is by purification using a series-level purifier that has been filled with adsorbents. In this study, the adsorbents used were activated charcoal and zeolite. The variables measured include CN ratio, pH, temperature, total solid (TS), volatile solid (VS), Biochemical Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) which influential in methane gas production. CH4 and CO2 levels, before and after purification. Biogas was purified for a duration of 30, 60, 90 minutes and was repeated three times. The results showed that the C/N ratio was 20.36 with an average temperature of 25.1 °C and an average pH of 6. The initial and final BOD values were 77800.86 mg/l and 53002.42 mg/l and the initial and final COD values were 59800 mg/l and 36000 mg/l. TS and VS experienced a decrease of 20.99% and 17.93%. The use of activated charcoal and zeolite adsorbents was able to increase the CH4 gas content by 136.5% and reduce the CO2 gas content by 64%. The optimal purification time is 30 minutes.


2010 ◽  
Vol 64 (5) ◽  
pp. 423-430 ◽  
Author(s):  
Milan Cekerevac ◽  
Ljiljana Nikolic-Bujanovic ◽  
Marko Mirkovic ◽  
Negica Popovic

The oxidative and coagulation efficiency of Na2FeO4 solution, electrochemically generated by trans-passive anodic oxidation of electrical steel in 10M NaOH solution, is confirmed in the process of purification of heavily contaminated wastewater from coal separation plant. The decontamination efficiency is evaluated comparing the values of selected contamination parameters obtained by chemical and biochemical analysis of plant effluent water and water obtained after decontamination with ferrate(VI) solution in relatively simple laboratory procedure. The sample of 450 ml of wastewater is treated in laboratory conditions with 100cm3 solution of 1 mg dm-3 Na2FeO4 in 10M NaOH. The chemical analysis of effluent water after treatment have shown almost 3 times lower permanganate index, about 3 times lower iron content, 1.45 times lower As3+ content, 7.35 times lower ammonia content. Turbidity and chemical oxygen demand (COD) is reduced for more than 5.77and 13.4 times, respectively. The suspended and colloid matter is eliminated from effluent water after treatment with ferrate(VI) solution. Also, biochemical exploration has confirmed high efficiency of ferrate(VI) in organics and microbial elimination showing 7.1 times lower 5-days bio-chemical oxygen demand (BOD5), and total elimination of aerobic and anaerobic bacteria from effluent water. According to standards on quality of industrial wastewater effluents, it may be concluded that ferrate(VI) treatment of wastewater almost completely eliminates excess of dangerous chemicals and pathogen bacteria, with the exemption of arsenic. Thus, ferrate(VI) shows capable performance in treatment of coal separation plant wastewater.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


2018 ◽  
Vol 6 (1) ◽  
Author(s):  
Badusha M. ◽  
Santhosh S

The hydro geochemical features of Neyyar River for a period of one year from May 2015 to April 2016 were analyzed. Six sampling sites were fixed considering physiography and present landuse pattern of the river basin. The residents in the drainage basin are primarily responsible for framing a better landuse and thereby maintain a good water and sediment regime. Geospatial pattern of the present landuse of the study area indicated that the sustainability of this river ecosystem is in danger due to unscientific landuse practices, which is reflected in the river quality as well. The parameters such as hydrogen ion concentration, electrical conductivity, chloride, Biological Oxygen Demand, total hardness and sulphate of river water and Organic Carbon of river bed sediments were analyzed in this study. The overall analysis shows that the highland areas are characterized by better quality of water together with low organic carbon, which is mainly due to better landuse and minimal reclamation. The midland and lowland areas are characterized by poor quality of water with high organic carbon, which is due to high anthropogenic activities and maximum pollutants associated with the region together with the alteration in landuse from a traditional eco-friendly pattern to a severely polluted current pattern.


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


ANRI ◽  
2020 ◽  
Vol 0 (4) ◽  
pp. 64-70
Author(s):  
Vladimir Povarov ◽  
Igor' Gusev ◽  
Sergey Rosnovsky ◽  
Dmitriy Statsura ◽  
Vladimir Kazansky ◽  
...  

The article is dedicated to the assessment of the experience in drainage water purification from radionuclides using ion-selective purification method on Units 1,2 Novovoronezh-2 NPP. Application of an ion-selective sorbent based on nickel ferrocyanide, as well as the preliminary oxidation of corrosive origin radiongjuclides, allow to achieve a satisfactory quality of purification from Cs-134, Cs-137, Co-60, Co 58, Mn-54, Cr-51. However, this method turned out to be ineffective for drainage water purification from Be-7, Sb-124, Sb-125. The article presents a possible method for drainage water purification from Be-7, Sb-124, Sb-125 using an iron-based coagulant, prospects for the modernization of the ion-selective drainage water purification plant, as well as plans to improve methods for drainage water purification at Novovoronezh-2 NPP


2000 ◽  
Vol 42 (3-4) ◽  
pp. 265-272 ◽  
Author(s):  
T. Inoue ◽  
Y. Nakamura ◽  
Y. Adachi

A dynamic model, which predicts non-steady variations in the sediment oxygen demand (SOD) and phosphate release rate, has been designed. This theoretical model consists of three diffusion equations with biochemical reactions for dissolved oxygen (DO), phosphate and ferrous iron. According to this model, step changes in the DO concentration and flow velocity produce drastic changes in the SOD and phosphate release rate within 10 minutes. The vigorous response of the SOD and phosphate release rate is caused by the difference in the time scale of diffusion in the water boundary layer and that of the biochemical reactions in the sediment. Secondly, a negative phosphate transfer from water to sediment can even occur under aerobic conditions. This is caused by the decrease in phosphate concentration in the aerobic layer due to adsorption.


2012 ◽  
Vol 30 (No. 5) ◽  
pp. 474-482 ◽  
Author(s):  
L. Siříšťová ◽  
Š. Přinosilová ◽  
K. Riddellová ◽  
J. Hajšlová ◽  
K. Melzoch

The production technology of high-quality vodka used in Russia involves filtration through activated charcoal. To approach the quality of renowned Russian vodka, one prominent Czech spirit-producing company installed on its production premises a filtration device including a charcoal column, and launched test runs during which different filtration conditions were tested. Samples collected during the test runs were analysed by GC-FID and GC-MS with the aim to compare their composition; sensory analysis was an integral part of the evaluation. The results documented a positive effect of charcoal filtration on the quality of produced vodka, which was not reduced when higher flow rates were applied. &nbsp;


2013 ◽  
Vol 295-298 ◽  
pp. 755-758 ◽  
Author(s):  
Ya Yun Liu ◽  
Zhi Hong Li ◽  
Xiao Jian Liang ◽  
Yan Peng Lin ◽  
Rong Hao Wu ◽  
...  

Based on the water quality investigation data of December in 2010, the water environment quality of Lv-tang River in Zhanjiang national urban wetland park was assessed using single water quality parameter model and integrated water quality index model. The results show that the water quality of Lv-tang River is worse than the national quality standards for Grade V. The water is polluted seriously. The main pollutants are total nitrogen (TN), ammonia nitrogen (NH3-N) and chemical oxygen demand CODCr with their average concentrations of 60.49 mg/L, 30.57 mg/L and 227.38mg/L, respectively. The averages of their single parameter pollution index are 30.25 , 19.79 and 8.74. The average of single parameter pollution index of the river is 8.23 which indicated that the river belongs to heavy pollution zone. The integrated water quality index was 22.5 showing that the river belongs to serious pollution zone.


2021 ◽  
Vol 1028 ◽  
pp. 326-330
Author(s):  
Otong Nurhilal ◽  
Sahrul Hidayat ◽  
Dadan Sumiarsa ◽  
Maykel Manawan ◽  
Risdiana

The quality of the carbon material for application of electrodes in the battery is indicated by its ability to intercalate ions, atoms or molecules. Graphite is a carbon material with good intercalation capability. In this research, a carbon material in the form of activated charcoal produced from biomass of water hyacinth has been prepared, which is carbonized at various temperatures of 400, 500, and 600 °C with three different activators of ZnCl2, KOH and H3PO4. The activated charcoal will be used as a cathode composite in lithium sulfur batteries. To determine the quality of the activated charcoal, the structure properties of activated charcoal were characterized using X-ray diffraction (XRD). Several parameters that are determined from XRD data included the degree of crystallinity, and the degree of graphitization (Y). The degree of crystallinity was found in the ranges between 5.56 and 12.6%, where activated charcoal was dominated by amorphous structures. The value of the degree of graphitization was about 36%.


Sign in / Sign up

Export Citation Format

Share Document