scholarly journals DEGRADASI KARBON, NITROGEN, DAN FOSFOR TANAH PASCA KEBAKARAN LAHAN DI KEBUN KELAPA SAWIT, PROVINSI LAMPUNG

2021 ◽  
Vol 8 (2) ◽  
pp. 333-340
Author(s):  
Renaldi Sambo Eka Saputra ◽  
Syahrul Kurniawan

Agricultural practices, especially land clearing by burning in peat-land, usually causes land-fire and result in nutrient degradation of peat-land. The research was aimed to assess nutrient content (i.e. C, N, P) in oil palm plantation within peatlands post land fire. The study was conducted on Tulang Bawang regency, Lampung Province. Soil samples were collected from two locations with different intensity of land fire, i.e. field with low intensity of land fire (land A) and land with high intensity of land fire (land B). In each land, the soil was taken from two depths (i.e. 0-10 cm and 10-30 cm) in three different zones of oil palm plantation, named as fertilization area, frond stack, and harvested path, with three replications of each. The variable measured including soil organic C, total N, and available P. Prior to statistical analysis, the data were tested normality. The result showed that the location with low intensity of land fire (land A) had higher soil organic C, total N, and available P at 0-10 cm and 10-30 cm depths of soil as compared to the area with high land fire intensity (land B). Application of N fertilizer and liming resulted in a higher total N at 0-10 cm depth of soil and available P (in the land A) in fertilization area as compared to frond stack and harvest path areas, both in land A and land B. Available P in land B at 0-10 cm and 10-30 cm soil depth in the fertilization area was lower than harvest path and frond stack areas, and this was probably due to the high losses through leaching and/or uptake by palm oil.

AGRICA ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 67-76
Author(s):  
Ana Juliana Ome ◽  
W.I.I Mella ◽  
Manuel Pian

The use of fire in agriculture land preparation may result in the change of various soil properties. Therefore, a study was conducted in the village of Oeteta, Kupang to determine soil total organic-C and total nitrogen of burned and unburned Vertisols. Randomized complete block design with two factors was applied. The first factor was burning treatment with two levels: burned and unburned. The second factor was soil depth with three levels: 0-10cm, 11-20cm and 21-30cm; all together made up 54 experimental units. Results showed that in all depths there was no significant difference in total soil organic-C between burned and unburned soils. However total soil organic-C contents in both burning treatments were considered high. Similarly, the was also no significant difference in total soil nitrogen between burned and unburned plots. Total soil N was considered in high and medium levels for burned and unburned soil respectively. In summary, burning does not affect soil total organic-C contents but reduces soil total N contents.


2020 ◽  
Vol 8 (1) ◽  
pp. 107-114
Author(s):  
Ghani Ilham Prawiradijaya ◽  
Syahrul Kurniawan

Peatlands have specific characteristics, namely irreversible drying, so that become flammable. Peat fires have an impact on changes in soil pH. The study aimed to analyze the soil acidity after peatland fires in oil palm plantation. This study used a survey method on two main plots (low and high fire intensity). Samples were taken at two soil depth including 0-10 cm and 11-30 cm in three zones (fertilization area, harvest path and frond pile zone) and repeated three times. Data were analyzed by ANOVA using the 5% nested test, then LSD test, and analyzed for correlation. The results showed that the soil pH on all land was included in the very acid category. Soil pH in the land B (land with high fire intensity) is higher than those in the land A (land with low fire intensity), both in top soil and sub soil. The micro-nutrient elements of Fe and Al in the land B are lower than land A, while the micro-nutrients of Mn in land B are higher than land A. The correlation of soil pH towards Fe and Al is negative, while for Mn is positive (pH increases, acid cations of Fe and Al will decrease while acid cations of Mn will increase). This was presumably due to competition in occupying the land-catchment complex.


2017 ◽  
Vol 21 (1) ◽  
pp. 19
Author(s):  
Muhammad Abdul Aziz ◽  
Fahrizal Hazra ◽  
Selly Salma ◽  
Dedi Nursyamsi Nursyamsi

Use of chemical fertilizers and pesticides on intensive land of both lowland and upland food crops have been shown to increase agricultural productivity significantly. Research aimed to study soil chemical characteristics and soil pesticide residues at some crops of organic and conventional farms. The research was carried out in  Laboratory of Soil Chemistry, Indonesian Soil Research Institute and in Laboratory of Agrochemical Residue, Indonesian Agricultural Environment Research Institute, Bogor from February to July 2015. Soil samples at 0-10 cm depth were taken compositely from broccoli (Brassica oleracea), carrots (Daucus carota), maize (Zea mays), and tomatoes (Solanum lycopersicum) farms in Bogor Regency as well as from rice field in Tasikmalaya Regency at both organic and conventional farms. Soil chemical characteristics were analyzed include: soil organic-C (Walkey and Black), total-N (Kjeldahl), potential-P (HCl 25%), available-P (Olsen), potential-K (HCl 25%), available-K (NH4OAc 1 N pH 7), CEC (NH4OAc 1 N pH 7), and pH (soil : water = 1: 5), while pesticide residues included levels of organochlorine (lindane, aldrin, heptaklor, dieldrin, DDT, endosulfan); organophosphates (diazinon, fenitrotin, metidation, paration, profenofos); and carbamates (carbofuran, MIPC, BPMC) in the soil by using Gas Chromatography method. Results showed that levels of soil organic-C, total-N, potential and available-P, potential and available-K, CEC, pH  at organic farms were higher than those at conventional farms. Some pesticide residues compound (organochlorines, organophosphates, and carbamates) were detected at conventional farm, while those at organic farm were not detected (trace).Keywords: Conventional farm, organic farm, pesticide residues, soil properties. [How to Cite: Muhammad AA, F Hazra, S Salma and D Nursyamsi. 2016. Soil Chemical Characteristics of Organic and Conventional Agriculture. J Trop Soils 21: 19-25. Doi: 10.5400/jts.2016.21.1.19] 


2001 ◽  
Vol 31 (12) ◽  
pp. 2225-2236 ◽  
Author(s):  
Peter S Homann ◽  
Bruce A Caldwell ◽  
H N Chappell ◽  
Phillip Sollins ◽  
Chris W Swanston

Chemical and microbial soil properties were assessed in paired unfertilized and urea fertilized (>89 g N·m–2) plots in 13 second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands distributed throughout western Washington and Oregon. A decade following the termination of fertilization, fertilized plots averaged 28% higher total N in the O layer than unfertilized plots, 24% higher total N in surface (0–5 cm) mineral soil, and up to four times the amount of extractable ammonium and nitrate. Decreased pH (0.2 pH units) caused by fertilization may have been due to nitrification or enhanced cation uptake. In some soil layers, fertilization decreased cellulase activity and soil respiration but increased wood decomposition. There was no effect of fertilization on concentrations of light and heavy fractions, labile carbohydrates, and phosphatase and xylanase activities. No increase in soil organic C was detected, although variability precluded observing an increase of less than ~15%. Lack of a regionwide fertilization influence on soil organic C contrasts with several site-specific forest and agricultural studies that have shown C increases resulting from fertilization. Overall, the results indicate a substantial residual influence on soil N a decade after urea fertilization but much more limited influence on soil C processes and pools.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


2009 ◽  
Vol 89 (4) ◽  
pp. 391-402 ◽  
Author(s):  
M R Carter ◽  
R D Peters ◽  
C Noronha ◽  
J Kimpinski

Conservation practices in potato (Solanum tuberosum L.) cropping systems can reduce excess tillage, provide crop residue cover, and maintain crop productivity; however, little is known about their long-term influence on soil biota and biological properties. Conservation tillage was evaluated in two potato rotations: a 2-yr barley-potato rotation and 3-yr clover-based (barley-red clover-potato) rotation initiated in 1994 on a fine sandy loam (Orthic Podzol) in Prince Edward Island, eastern Canada. Soil samples were obtained in 2003 from the 0- to 10-cm soil depth of the potato phase of both rotations to evaluate the influence of conservation, compared with conventional tillage, on changes in soil fertility, soil structural properties, soil C and N fractions, soil-borne pathogens, nematode communities, and micro-arthropod (Collembola and Acari) communities. The 3-yr conservation tillage practice improved soil structural stability, increased soil extractable P and K, increased soil organic C and total N and their particulate fractions, compared with the other treatments. Comparisons with earlier studies indicated that soil organic C had reached an equilibrium level at the 0- to 10-cm soil depth. Reduction of potato disease caused by Rhizoctonia solani was evident in the 3-yr rotation, compared with the 2-yr rotation, but was not influenced by tillage practice. Plant parasitic nematodes were not greatly influenced by rotation and tillage treatments; however, densities of the beneficial bacterial-feeding nematodes were increased under the 3-yr conservation tillage treatment. The abundance of micro-arthropods was increased by conservation tillage, while their diversity was mainly influenced by the rotation cycle rather than tillage practice. Overall, the 3-yr conservation tillage treatment provided a more beneficial soil biological condition than the other treatments, especially when compared with the 2-yr conventional tillage practice. Key words: Conservation systems, potato rotation, fine sandy loam, soil fertility, soil organic C and N fractions, soil structure, soil-borne pathogens, nematode, Collembola; Acari


2021 ◽  
Vol 18 (18) ◽  
pp. 5185-5202
Author(s):  
Juhwan Lee ◽  
Raphael A. Viscarra Rossel ◽  
Mingxi Zhang ◽  
Zhongkui Luo ◽  
Ying-Ping Wang

Abstract. Land use and management practices affect the response of soil organic carbon (C) to global change. Process-based models of soil C are useful tools to simulate C dynamics, but it is important to bridge any disconnect that exists between the data used to inform the models and the processes that they depict. To minimise that disconnect, we developed a consistent modelling framework that integrates new spatially explicit soil measurements and data with the Rothamsted carbon model (Roth C) and simulates the response of soil organic C to future climate change across Australia. We compiled publicly available continental-scale datasets and pre-processed, standardised and configured them to the required spatial and temporal resolutions. We then calibrated Roth C and ran simulations to estimate the baseline soil organic C stocks and composition in the 0–0.3 m layer at 4043 sites in cropping, modified grazing, native grazing and natural environments across Australia. We used data on the C fractions, the particulate, mineral-associated and resistant organic C (POC, MAOC and ROC, respectively) to represent the three main C pools in the Roth C model's structure. The model explained 97 %–98 % of the variation in measured total organic C in soils under cropping and grazing and 65 % in soils under natural environments. We optimised the model at each site and experimented with different amounts of C inputs to simulate the potential for C accumulation under constant climate in a 100-year simulation. With an annual increase of 1 Mg C ha−1 in C inputs, the model simulated a potential soil C increase of 13.58 (interquartile range 12.19–15.80), 14.21 (12.38–16.03) and 15.57 (12.07–17.82) Mg C ha−1 under cropping, modified grazing and native grazing and 3.52 (3.15–4.09) Mg C ha−1 under natural environments. With projected future changes in climate (+1.5, 2 and 5.0 ∘C) over 100 years, the simulations showed that soils under natural environments lost the most C, between 3.1 and 4.5 Mg C ha−1, while soils under native grazing lost the least, between 0.4 and 0.7 Mg C ha−1. Soil under cropping lost between 1 and 2.7 Mg C ha−1, while those under modified grazing showed a slight increase with temperature increases of 1.5 ∘C, but with further increases of 2 and 5 ∘C the median loss of TOC was 0.28 and 3.4 Mg C ha−1, respectively. For the different land uses, the changes in the C fractions varied with changes in climate. An empirical assessment of the controls on the C change showed that climate, pH, total N, the C : N ratio and cropping were the most important controls on POC change. Clay content and climate were dominant controls on MAOC change. Consistent and explicit soil organic C simulations improve confidence in the model's estimations, facilitating the development of sustainable soil management under global change.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Soo Ying Ho ◽  
Mohd Effendi Bin Wasli ◽  
Mugunthan Perumal

A study was conducted in the Sabal area, Sarawak, to evaluate the physicochemical properties of sandy-textured soils under smallholder agricultural land uses. Study sites were established under rubber, oil palm, and pepper land uses, in comparison to the adjacent secondary forests. The sandy-textured soils underlain in all agricultural land uses are of Spodosols, based on USDA Soil Taxonomy. The soil properties under secondary forests were strongly acidic with poor nutrient contents. Despite higher bulk density in oil palm farmlands, soil properties in rubber and oil palm land uses showed little variation to those in secondary forests. Conversely, soils under pepper land uses were less acidic with higher nutrient contents at the surface layer, especially P. In addition, soils in the pepper land uses were more compact due to human trampling effects from regular farm works at a localized area. Positive correlations were observed between soil total C and soil total N, soil exchangeable K, soil sum of bases, and soil effective CEC, suggesting that soil total C is the determinant of soil fertility under the agricultural land uses. Meanwhile, insufficient K input in oil palm land uses was observed from the partial nutrient balances estimation. In contrast, P and K did not remain in the soils under pepper land use, although the fertilizers application by the farmers was beyond the crop uptake and removal (harvesting). Because of the siliceous sandy nature (low clay contents) of Spodosols, they are poor in nutrient retention capacity. Hence, maintaining ample supply of organic C is crucial to sustain the productivity and fertility of sandy-textured soils, especially when the litterfall layers covering the E horizon were removed for oil palm and pepper cultivation.


Soil Research ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 820 ◽  
Author(s):  
K. A. Conrad ◽  
R. C. Dalal ◽  
D. E. Allen ◽  
R. Fujinuma ◽  
Neal W. Menzies

Quantifying the size and turnover of physically uncomplexed soil organic matter (SOM) is crucial for the understanding of nutrient cycling and storage of soil organic carbon (SOC). However, the C and nitrogen (N) dynamics of SOM fractions in leucaena (Leucaena leucocephala)–grass pastures remains unclear. We assessed the potential of leucaena to sequester labile, free light fraction (fLF) C and N in soil by estimating the origin, quantity and vertical distribution of physically unprotected SOM. The soil from a chronosequence of seasonally grazed leucaena stands (0–40 years) was sampled to a depth of 0.2m and soil and fLF were analysed for organic C, N and δ13C and δ15N. On average, the fLF formed 20% of SOC and 14% of total N stocks in the upper 0.1m of soil from leucaena rows and showed a peak of fLF-C and fLF-N stocks in the 22-year-stand. The fLF δ13C and fLF δ15N values indicated that leucaena produced 37% of fLF-C and 28% of fLF-N in the upper 0.1m of soil from leucaena rows. Irrespective of pasture type or soil depth, the majority of fLF-C originated from the accompanying C4 pasture-grass species. This study suggests that fLF-C and fLF-N, the labile SOM, can form a significant portion of total SOM, especially in leucaena–grass pastures.


1986 ◽  
Vol 8 (1) ◽  
pp. 11 ◽  
Author(s):  
RB Hacker

An earthy sand supporting a mulga shrubland community in the arid winter rainfall zone in Western Australia is characterized in terms of its chemical and physical properties. In this study, changes in these properties with overgrazing were investigated. Nutrient levels were low in relation to some soils supporting mulga communities elsewhere in Australia. Marked accumulations of total N, organic C and exchangeable Ca occurred in the hummocks of wind blown material surrounding surface obstructions. Improved water relationships are probably responsible for the abundance of ephemeral growth on such areas, and for their subsequent chemical enrichment. Changes in chemical properties with depth were evident for pH, total N, organic C, available P and exchangeable Mg with values decreasing from the 0-2 cm layer to the 2-10 cm layer in all cases. Chemical changes associated with overgrazing were restricted to the 0-2 cm layer. Some trends towards lower levels of organic C, total N, and available P could be distinguished, particularly for organic C and total N in hummock surfaces, but chemical parameters generally did not provide a sensitive measure of grazing impact. Sorptivity varied between the sandy and crusted phases of the soil mosaic and was reduced on sites in very poor condition. Sorptivity changes under grazing were apparently mediated partly by changes in the structural properties of the soil crust. There was no significant effect of overgrazing on either the bulk density of the surface (sub-crust) soil or on summer surface temperatures.


Sign in / Sign up

Export Citation Format

Share Document