DNA Methylation Abnormality and Brain Dysfunction of Neural Stem Cells Caused by Chronic Inflammation by Nanoparticle Exposure

Impact ◽  
2020 ◽  
Vol 2020 (7) ◽  
pp. 28-30
Author(s):  
Ken Tachibana

The biological development of a human is an extremely complex and delicate process. It starts from fertilisation and continues until long after birth. The creation and development of the brain is particularly complicated and susceptible to disruptions to its progression. The primary cells responsible for the development of the brain are the neural stem cells. These are a broad class of cells that can differentiate into the wide range of cell types that form the adult brain. To achieve this complex process, different cells need to undergo a range of gene expression changes at the right time. This is delicate and its disturbance is a key cause of pathology in a wide range of diseases. There are many external factors that are known to disrupt neural development however, there are several common chemicals whose effects remain largely unknown. One such group are broadly described as nanoparticles. These are small particles that are being increasingly used by many industries as they can help in the creation of products with better properties. However, their effect on the environment and the human body – particularly that of a developing brain – have been largely unexamined. Associate Professor Ken Tachibana of the Division of Hygienic Chemistry, Sanyo-Onoda City University, Japan is researching the effects of nanoparticles on neural development.

2010 ◽  
Vol 21 (2) ◽  
pp. 125-140
Author(s):  
Keith W Muir

SummaryStem cells are a potential means of tissue regeneration in the brain that hold promise for treatment of the large number of stroke survivors who have permanent disability. Animal studies with stem cells derived from many different sources indicate that cells can migrate to the site of ischaemic injury in the brain, and that some survive and differentiate into neurones and glia with evidence of electrical function. Cells additionally promote endogenous repair mechanisms, including mobilization of neural stem cells resident within the adult brain. Whether the behavioural benefits seen with stem cell administration in rodent models reflect enhanced endogenous recovery or tissue regeneration is unclear. Production of stem cells to clinical standards and in quantities required for clinical studies is technically challenging. To date only a handful of patients have been involved in preliminary clinical studies of cell therapies for stroke, and there are therefore insufficient data to draw conclusions about either safety or efficacy. Further trials with several cell types are ongoing or planned, including neural stem cells, and bone marrow-derived stem cells and endothelial progenitor cells.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1468
Author(s):  
Yashika S. Kamte ◽  
Manisha N. Chandwani ◽  
Alexa C. Michaels ◽  
Lauren A. O’Donnell

Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.


2019 ◽  
Vol 20 (2) ◽  
pp. 455 ◽  
Author(s):  
Felix Beyer ◽  
Iria Samper Agrelo ◽  
Patrick Küry

The adult mammalian central nervous system (CNS) is generally considered as repair restricted organ with limited capacities to regenerate lost cells and to successfully integrate them into damaged nerve tracts. Despite the presence of endogenous immature cell types that can be activated upon injury or in disease cell replacement generally remains insufficient, undirected, or lost cell types are not properly generated. This limitation also accounts for the myelin repair capacity that still constitutes the default regenerative activity at least in inflammatory demyelinating conditions. Ever since the discovery of endogenous neural stem cells (NSCs) residing within specific niches of the adult brain, as well as the description of procedures to either isolate and propagate or artificially induce NSCs from various origins ex vivo, the field has been rejuvenated. Various sources of NSCs have been investigated and applied in current neuropathological paradigms aiming at the replacement of lost cells and the restoration of functionality based on successful integration. Whereas directing and supporting stem cells residing in brain niches constitutes one possible approach many investigations addressed their potential upon transplantation. Given the heterogeneity of these studies related to the nature of grafted cells, the local CNS environment, and applied implantation procedures we here set out to review and compare their applied protocols in order to evaluate rate-limiting parameters. Based on our compilation, we conclude that in healthy CNS tissue region specific cues dominate cell fate decisions. However, although increasing evidence points to the capacity of transplanted NSCs to reflect the regenerative need of an injury environment, a still heterogenic picture emerges when analyzing transplantation outcomes in injury or disease models. These are likely due to methodological differences despite preserved injury environments. Based on this meta-analysis, we suggest future NSC transplantation experiments to be conducted in a more comparable way to previous studies and that subsequent analyses must emphasize regional heterogeneity such as accounting for differences in gray versus white matter.


2016 ◽  
Vol 87 (3) ◽  
pp. 146-155 ◽  
Author(s):  
Barbara S. Beltz ◽  
Georg Brenneis ◽  
Jeanne L. Benton

The 1st-generation neural precursors in the crustacean brain are functionally analogous to neural stem cells in mammals. Their slow cycling, migration of their progeny, and differentiation of their descendants into neurons over several weeks are features of the neural precursor lineage in crayfish that also characterize adult neurogenesis in mammals. However, the 1st-generation precursors in crayfish do not self-renew, contrasting with conventional wisdom that proposes the long-term self-renewal of adult neural stem cells. Nevertheless, the crayfish neurogenic niche, which contains a total of 200-300 cells, is never exhausted and neurons continue to be produced in the brain throughout the animal's life. The pool of neural precursors in the niche therefore cannot be a closed system, and must be replenished from an extrinsic source. Our in vitro and in vivo data show that cells originating in the innate immune system (but not other cell types) are attracted to and incorporated into the neurogenic niche, and that they express a niche-specific marker, glutamine synthetase. Further, labeled hemocytes that undergo adoptive transfer to recipient crayfish generate cells in neuronal clusters in the olfactory pathway of the adult brain. These hemocyte descendants express appropriate neurotransmitters and project to target areas typical of neurons in these regions. These studies indicate that under natural conditions, the immune system provides neural precursors supporting adult neurogenesis in the crayfish brain, challenging the canonical view that ectodermal tissues generating the embryonic nervous system are the sole source of neurons in the adult brain. However, these are not the first studies that directly implicate the immune system as a source of neural precursor cells. Several types of data in mammals, including adoptive transfers of bone marrow or stem cells as well as the presence of fetal microchimerism, suggest that there must be a population of cells that are able to access the brain and generate new neurons in these species.


2021 ◽  
Vol 4 (1) ◽  
pp. 23-41
Author(s):  
Alexandra-Elena Dobranici ◽  
Sorina Dinescu ◽  
Marieta Costache

Specialised cells of the brain are generated from a population of multipotent stem cells found in the forming embryo and adult brain after birth, called neural stem cells. They reside in specific niches, usually in a quiescent, non-proliferating state that maintains their reservoir. Neural stem cells are kept inactive by various cues such as direct cell-cell contacts with neighbouring cells or by soluble molecules that trigger intracellular responses. They are activated in response to injuries, physical exercise, or hypoxia condition, through stimulation of signaling pathways that are usually correlated with increased proliferation and survival. Moreover, mature neurons play essential role in regulating the balance between active and quiescent state by realising inhibitory or activating neurotransmitters. Understanding molecular mechanisms underlying neuronal differentiation is of great importance in elucidating pathological conditions of the brain and treating neurodegenerative disorders that until now have no efficient therapies.


2009 ◽  
Vol 20 (1) ◽  
pp. 188-199 ◽  
Author(s):  
Omedul Islam ◽  
Xiandi Gong ◽  
Stefan Rose-John ◽  
Klaus Heese

Besides its wide range of action as a proinflammatory cytokine in the immune system, interleukin-6 (IL-6) has also attracted much attention due to its influence on the nervous system. In the present study we show that the designer fusion protein H-IL-6, consisting of IL-6 and its specific receptor IL-6R-α, but not IL-6 alone, mediates both neuro- as well as gliogenesis. Using immunocytochemistry, Western blot, and patch-clamp recording, we demonstrate that H-IL-6 induces the differentiation of neural stem cells (NSCs) specifically into glutamate-responsive neurons and two morphological distinctive astroglia cell types. H-IL-6–activated neurogenesis seems to be induced by the MAPK/CREB (mitogen-activated protein kinase/cAMP response element-binding protein) cascade, whereas gliogenesis is mediated via the STAT-3 (signal transducers and activators of transcription protein-3) signaling pathway. Our finding that IL-6 mediates both processes depending on its specific soluble receptor sIL-6R-α has implications for the potential treatment of neurodegenerative diseases.


STEMedicine ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. e19
Author(s):  
Jelena Ban ◽  
Miranda Mladinic

Neural stem cells are capable of generating new neurons during development as well as in the adulthood and represent one of the most promising tools to replace lost or damaged neurons after injury or neurodegenerative disease. Unlike the brain, neurogenesis in the adult spinal cord is poorly explored and the comprehensive characterization of the cells that constitute stem cell neurogenic niche is still missing. Moreover, the terminology used to specify developmental and/or anatomical CNS regions, where neurogenesis in the spinal cord occurs, is not consensual and the analogy with the brain is often unclear. In this review, we will try to describe the heterogeneity of the stem cell types in the spinal cord ependymal zone, based on their origin and stem cell potential. We will also consider specific animal in vitro models that could be useful to identify “the right” stem cell candidate for cell replacement therapies.   


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tianyuan Shi ◽  
Martin Cheung

AbstractNeurological diseases are mainly modeled using rodents through gene editing, surgery or injury approaches. However, differences between humans and rodents in terms of genetics, neural development, and physiology pose limitations on studying disease pathogenesis in rodent models for neuroscience research. In the past decade, the generation of induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) by reprogramming somatic cells offers a powerful alternative for modeling neurological diseases and for testing regenerative medicines. Among the different somatic cell types, urine-derived stem cells (USCs) are an ideal cell source for iPSC and iNSC reprogramming, as USCs are highly proliferative, multipotent, epithelial in nature, and easier to reprogram than skin fibroblasts. In addition, the use of USCs represents a simple, low-cost and non-invasive procedure for generating iPSCs/iNSCs. This review describes the cellular and molecular properties of USCs, their differentiation potency, different reprogramming methods for the generation of iPSCs/iNSCs, and their potential applications in modeling neurological diseases.


2019 ◽  
Author(s):  
Pascal Bielefeld ◽  
Maralinde R. Abbink ◽  
Anna R. Davidson ◽  
Paul J. Lucassen ◽  
Aniko Korosi ◽  
...  

AbstractEarly life stress (ELS) is a potent environmental factor that can confer enduring effects on brain structure and function. Exposure to stress during early life has been linked to a wide range of physiopathological consequences later in life. In particular, ELS has been shown to have lasting effects on neurogenesis in the adult brain, suggesting that ELS is a significant regulator of adult neural stem cell function. Here, we investigated the effect of ELS on the numbers and proliferation of neural stem cells in the hypothalamus of adult mice. We show that ELS has long term negative effects on hypothalamic neural stem cell numbers and on their proliferation. Specifically, ELS reduced the total numbers of PCNA+ cells present in hypothalamic areas surrounding the 3rd ventricle; the numbers of PCNA+/Sox2+/Nestin-GFP+ cells present in the medial eminence at the base of the 3rd ventricle; and the number of β-tanycytes around the ventral 3rd ventricle, without affecting the numbers of α-tanycytes in more dorsal areas. These results suggest that a reduction of proliferation and tanycyte numbers contributes to the effects of ELS on the hypothalamus and its consequent physiological alterations.


2017 ◽  
Author(s):  
Maria Angeles Marques-Torrejon ◽  
Ester Gangoso ◽  
Steven M. Pollard

AbstractGlioblastoma (GBM) is an aggressive incurable brain cancer. The cells that fuel the growth of tumours resemble neural stem cells found in the developing and adult mammalian forebrain. These are referred to as GBM stem cells (GSCs). Similar to neural stem cells, GSCs exhibit a variety of phenotypic states: dormant, quiescent, proliferative and differentiating. How environmental cues within the brain influence these distinct states is not well understood. Laboratory models of GBM tumours can be generated using either genetically engineered mouse models, or via intracranial transplantation of cultured tumour initiating cells (mouse or human). Unfortunately, these approaches are expensive, time-consuming, low-throughput and ill-suited for monitoring of live cell behaviours. Here we explored whole adult brain coronal organotypic slices as a complementary strategy to remove the experimental bottleneck. Mouse adult brain slices remain viable in a neural stem cell serum-free basal media for several weeks. GSCs can therefore be easily microinjected into specific anatomical sites ex vivo. We demonstrated distinct responses of engrafted GSCs to different microenvironments in the brain. Within the subependymal zone – one of the adult neural stem cell niches – a subset of injected tumour cells could effectively engraft and respond to endothelial niche signals. GSCs transplanted slices were treated with the anti-mitotic drug temozolomide as proof-of-principle of the utility in modelling responses to existing treatments. Thus, engraftment of mouse or human GSCs onto whole brain coronal organotypic brain slices provides a convenient experimental model for studies of GSC-host interactions and preclinical testing of candidate therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document