Development of non-contact three-dimensional resonator applicator with non-invasive temperature measurement function

Impact ◽  
2021 ◽  
Vol 2021 (5) ◽  
pp. 6-7
Author(s):  
Kazuo Kato ◽  
Yasuhiro Shindo ◽  
Yuya Iseki

Cancer affects the lives of many people across the world. Indeed, it is the second leading cause of death globally. There are a number of existing cancer treatments but they have limitations. For example, many treatments destroy diseased tissue but also damage healthy tissue in the process. Professor Kazuo Kato, Department of Mechanical Engineering Informatics, School of Science and Technology, Meiji University, Japan, is working to discover how cancer cells can be killed without harming the patient. This work centres on the principles that underlie hyperthermia, which is a cancer treatment that can treat cancer without damaging the human body. It does this by exposing body tissue to high temperatures and cancer cells are more sensitive to heat than normal cells. Kato and the team are developing a hyperthermia system that is able to heat cells in various tissues while using ultrasound images to non-invasively measure the 3D temperature distribution inside the human body. Using this technique, cancerous tissues can be heated and treated non invasively. An additional benefit of the novel ultrasound imaging system and cavity resonator that the researchers are developing is that it is smaller and less expensive than existing treatments.

Author(s):  
Ebrahim Najafzadeh ◽  
Parastoo Farnia ◽  
Alireza Ahmadian ◽  
Hossein Ghadiri

Purpose: A Photoacoustic Imaging (PAI) as a non-invasive hybrid imaging modality has the potential to be used in a wide range of pre-clinical and clinical applications. There are different optical excitation sources that affect the performance of PAI systems. Our goal is proving the capability of the Light-Emitting Diode (LED) based PAI system for imaging of objects in different depths. Materials and Methods: In this study the Full Width of Half Maximum (FWHM) and Contrast to Noise Ratio (CNR) of LED-based PAI system is evaluated using agar, and Poly-Vinyl Alcohol Cryogel (PVA-C) phantoms. Results: The results show that axial and lateral FWHM of the photoacoustic image in agar phantom 1%, are 0.59 and 1.16 mm, respectively. It is capable of distinguishing objects about 250 µm. Furthermore, one of the main improvements of photoacoustic images is achieved by proposed LED-based system that is a 26% higher CNR versus the ultrasound images. Conclusion: Therefore, the provided technical characteristics in this study have made designed LED-based PAI system as a suitable tool for preclinical and clinical imaging.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 10061-10061
Author(s):  
Y. Tsuruta ◽  
L. Pereboeva ◽  
D. T. Rein ◽  
M. Breidenbach ◽  
D. T. Curiel

10061 Background: Although a number of advances in ovarian cancer treatment have occurred in the last decade, most patients will experience a recurrence after standard therapies. Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenovirus (CRAd) contains tumor-specific promoters that restrict virus replication to cancer cells and has shown particular promise as oncolytic viral agents. However, the lack of a tumor-volume monitoring system hinders the evaluation of CRAd impact on cancer treatment. Therefore, methods for analyzing CRAd efficacy and tumor response are required. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian cancer but not in normal ovarian tissues. The purpose of this study was to explore the therapeutic utility of a mesothelin promoter-based CRAd in a murine model of ovarian cancer, using a non-invasive biological imaging system. Methods: We constructed a mesothelin promoter based CRAd which also contains a modified fiber (Ad5/3 fiber) previously shown to improve infectivity of many ovarian cancer cells (Ad5/3MSLN). Viral replication and oncolysis were assessed in a panel of ovarian cancer cell lines. To test the oncolytic efficacy of Ad5/3MSLN in murine model, firefly luciferase-expressing SK-OV-3-luc cells were injected intraperitoneally (i.p.), followed by an i.p. injection of viruses. Then, bioluminescence imaging of tumor luciferase activity was carried out. Results: Ad5/3MSLN achieved up to 10,000-fold higher cell killing effect and up to 120-fold higher levels of viral replication in all ovarian cancer cell lines tested, compared to wild type Ad5. In vivo tumor imaging confirmed that Ad5/3MSLN significantly inhibited tumor growth, while the untreated mice had rapid tumor growth (p<0.05). Survival with Ad5/3MSLN was significantly enhanced when compared with no virus, or wild type Ad5-treated group (p<0.05). Conclusions: The robust replication, oncolysis, and in vivo therapeutic efficacy of Ad5/3MSLN demonstrated that this CRAd is a promising candidate for treating ovarian cancer. Importantly, we have established an in vivo non-invasive imaging system, which has allowed repeated and longitudinal measurements of tumor growth after CRAd treatment. No significant financial relationships to disclose.


1983 ◽  
Vol 5 (4) ◽  
pp. 308-330 ◽  
Author(s):  
D.R. Foster ◽  
M. Arditi ◽  
F.S. Foster ◽  
M.S. Patterson ◽  
J.W. Hunt

The granularity or speckle in medical ultrasound images tends to mask the presence of small lesions. As well, artifactual filling in of anechoic regions such as cysts, reduces the diagnostic potential of the images. These effects depend not only on the acoustic properties of the tissue but also are strongly influenced by the imaging system, especially the transducer geometry. To study the effect of the transducer on the final B-scan image, a computer model has been developed simulating the interaction of ultrasound with a simple scattering medium. This model, incorporating the position dependence of the point response of the transducer, is based on single scattering from a collection of points positioned randomly in a three-dimensional volume. Using this approach, B-scan images showing speckle have been generated for different transducer geometries. Inclusion of a 2.6 mm void mimicking a cyst within the three-dimensional scattering volume has allowed us to predict the cyst contrast in the image for the different transducer systems. Experimental B-scan images of a scattering phantom were obtained using the different pulse echo systems. Quantitative assessment using first and second order statistics of the images shows good agreement between experiment and theory.


2021 ◽  
Vol 33 (4) ◽  
pp. 5-8
Author(s):  
Shailendra Kumar Motwani ◽  
Helen Saunders

The current global pandemic caused by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) presents a huge challenge for physicians. Rapid diagnosis, triage and clinical management of these patients is a challenge for physicians but may be aided using lung ultrasound. Lung ultrasound has been in use for over 10 years mainly by critical care practitioners and emergency physicians with variable uptake, but it has gained popularity during the Coronavirus disease-2019 (COVID-19) pandemic as a diagnostic tool and can be easily learned compared to the other ultrasound techniques. Image interpretation is based on identifying artefacts generated by the pleural surface. This technique is non-invasive and can be performed rapidly at the patient’s bedside. It has higher accuracy in diagnosis than auscultation and Chest X-ray (CXR) combined. In this article the authors describe the interpretation of lung ultrasound images, particularly in patients with COVID-19 and discuss indications for this technique. Physicians are recommended to gain familiarity with this technique and use of online resources for guidance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hongfei Zhang ◽  
Yuanmeng Zhao ◽  
Chenyu Li ◽  
Cunlin Zhang

Chinese lacquerware is an important invention of arts and crafts in China. In this study, Chinese lacquerware is characterized using terahertz reflectometric imaging. The lacquerware studied herein comprises an ornamental wood panel covered by multiple layers of lacquers to portray motifs. For characterizing lacquerware, a terahertz time-domain spectroscopic reflectometric imaging system is proposed. The role of the proposed terahertz imaging system in highlighting the interface between layers during stratigraphic buildup in reflection geometry is proved. The proposed system provides a universal method for assessing the structural information of lacquered objects in a contactless and non-invasive manner; moreover, it provides two-dimensional images, subsurface three-dimensional images, and stratigraphic images (b-scans) in a contactless and non-invasive manner. Using the proposed system, we examine the buried layers of the lacquerware, including faults in the wooden layer and damages in the lacquerware. Research shows the promising prospects of terahertz time-domain spectroscopic reflectometric imaging as a non-destructive detection technique suited to lacquerware.


2019 ◽  
Vol 37 (1) ◽  
pp. 237-261 ◽  
Author(s):  
Marie Tirvaudey ◽  
Robin Bouclier ◽  
Jean-Charles Passieux ◽  
Ludovic Chamoin

Purpose The purpose of this paper is to further simplify the use of NURBS in industrial environnements. Although isogeometric analysis (IGA) has been the object of intensive studies over the past decade, its massive deployment in industrial analysis still appears quite marginal. This is partly due to its implementation, which is not straightforward with respect to the elementary structure of finite element (FE) codes. This often discourages industrial engineers from adopting isogeometric capabilities in their well-established simulation environment. Design/methodology/approach Based on the concept of Bézier and Lagrange extractions, a novel method is proposed to implement IGA from an existing industrial FE code with the aim of bringing human implementation effort to the minimal possible level (only using standard input-output of finite element analysis (FEA) codes, avoid code-dependent subroutines implementation). An approximate global link to go from Lagrange polynomials to non-uniform-rational-B-splines functions is formulated, which enables the whole FE routines to be untouched during the implementation. Findings As a result, only the linear system resolution step is bypassed: the resolution is performed in an external script after projecting the FE system onto the reduced, more regular and isogeometric basis. The novel procedure is successfully validated through different numerical experiments involving linear and nonlinear isogeometric analyses using the standard input/output of the industrial FE software Code_Aster. Originality/value A non-invasive implementation of IGA into FEA software is proposed. The whole FE routines are untouched during the novel implementation procedure; a focus is made on the IGA solution of nonlinear problems from existing FEA software; technical details on the approach are provided by means of illustrative examples and step-by-step implementation; the methodology is evaluated on a range of two- and three-dimensional elasticity and elastoplasticity benchmarks solved using the commercial software Code_Aster.


1996 ◽  
Vol 17 (2) ◽  
pp. 71-79 ◽  
Author(s):  
Philip V Patete ◽  
Jeffrey P Bulgrin ◽  
Mohammad M Shabani ◽  
Daniel J Smith

Author(s):  
H.W. Deckman ◽  
B.F. Flannery ◽  
J.H. Dunsmuir ◽  
K.D' Amico

We have developed a new X-ray microscope which produces complete three dimensional images of samples. The microscope operates by performing X-ray tomography with unprecedented resolution. Tomography is a non-invasive imaging technique that creates maps of the internal structure of samples from measurement of the attenuation of penetrating radiation. As conventionally practiced in medical Computed Tomography (CT), radiologists produce maps of bone and tissue structure in several planar sections that reveal features with 1mm resolution and 1% contrast. Microtomography extends the capability of CT in several ways. First, the resolution which approaches one micron, is one thousand times higher than that of the medical CT. Second, our approach acquires and analyses the data in a panoramic imaging format that directly produces three-dimensional maps in a series of contiguous stacked planes. Typical maps available today consist of three hundred planar sections each containing 512x512 pixels. Finally, and perhaps of most import scientifically, microtomography using a synchrotron X-ray source, allows us to generate maps of individual element.


Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document