scholarly journals Simulating fouling impact on the permeate flux in high-pressure membranes

2021 ◽  
Vol 8 (8) ◽  
pp. 1-8
Author(s):  
Hisham A. Maddah ◽  

Porous high-pressure membranes have been widely used for saline water desalination. However, fouling (concentration polarization) extensively reduces permeate flux in reverse osmosis (RO) and/or nanofiltration (NF) modules. Fouling arises from pore blocking, organic adsorption, cake formation, inorganic or biological precipitation reducing water flux. Herein, we investigated the effect of feed water with various NaCl concentrations on fouling of RO and/or NF and the permeate water flux. A parabolic (or diffusion) partial differential equation (PDE) was used to model salt concentration profile or gradient inside the membrane. Subsequently, the numerical PDE equation, solved by the forward finite difference (FFD) explicit method, estimated flux decline rates resulted from NaCl fouling. It was found that salt accumulation occurs at the feed-side with a noticeable decrease in flux as fouling increases. Previous works reported similar findings as those identified from our analysis: (1) fouling increases with feed concentration and surface roughness, (2) fouling becomes intensified with higher pressure and flux, (3) fouling from long operation times can reduce flux by 65% within 24 h, (4) NaCl fouling can decrease flux rates by 70% (67-22 LMH) for brackish water with an initial concentration of 10000 ppm, and (5) reversible organic fouling may be avoided from lowering flux rates below the membrane critical flux. Results showed fouled RO modules would decrease flux rates from the increased surface polarization, where reverse flow (negative flux) was estimated for feed-side accumulations >10000 ppm for waters with an initial NaCl concentration of 10000 ppm and average diffusivity of 1.3×10-6 cm2/s.

2000 ◽  
Vol 122 (4) ◽  
pp. 170-175 ◽  
Author(s):  
K. B. Franc¸a ◽  
H. M. Laborde ◽  
H. Neff

A small scale solar powered desalination system has been designed, analyzed, and optimized with regard to power needs and energy consumption. Both quantities scale linearly with the concentration of the total dissolved salt concentration (TDS) in the feed solution. The desalination of brackish water at a TDS value of 3,000 ppm requires an energy of approximately 1.5 kWh/m3. For seawater at a TDS value of 34,000 ppm, this value increases to 9.5 kWh/m3. The selected type of membrane, the system design, and, in particular, the efficiency of the high pressure pump crucially affect energy consumption. The desalination cost also has been estimated for a small scale system that linearly scale with the TDS value of the feed water. [S0199-6231(00)00104-0]


2019 ◽  
Vol 22 (3) ◽  
pp. 85-92 ◽  
Author(s):  
Aulia Rahma ◽  
Muthia Elma ◽  
Mahmud Mahmud ◽  
Chairul Irawan ◽  
Amalia Enggar Pratiwi ◽  
...  

The high number of natural organic matter contain in wetland water may cause its water has brown color and not consumable. In other hand, intrusion of sea water through wetland aquifer create water become saline, notably on hot season. Coagulation is effective method to applied for removing of natural organic matter. However, it could not be used for salinity removal. Hence combination of coagulation and pervaporation process is attractive method to removing both of natural organic matter and conductivity of wetland saline water. The objective of this works is to investigate optimum coagulant doses for removing organic matter by coagulation process as pretreatment and to analysis performance of coagulation-pervaporation silica-pectin membrane for removing of organic matter and conductivity of wetland saline water. Coagulation process in this work carried out under varied aluminum sulfate dose 10-60 mg.L-1. Silica-pectin membrane was used for pervaporation process at feed temperature ~25 °C (room temperature). Optimum condition of pretreatment coagulation set as alum dose at 30 mg.L-1 with maximum removal efficiency 81,8 % (UV254) and 40 % (conductivity). In other hand, combining of coagulation-pervaporation silica-pectin membrane shows both of UV254 and salt rejection extremely good instead without pretreatment coagulation of 86,8 % and 99,9 % for UV254 and salt rejection respectively. Moreover, water flux of silica-pectin membrane pervaporation with coagulation pretreatment shown higher 17,7 % over water flux of wetland saline water without pretreatment coagulation. Combining of coagulation and pervaporation silica-pectin membrane is effective to removing both of organic matter and salinity of wetland saline water at room temperature.


Konversi ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Lilis Septyaningrum ◽  
Rahmawati Rahmawati ◽  
Fitri Ria Mustalifah ◽  
Aulia Rahma ◽  
Dewi Puspita Sari ◽  
...  

When hot season, South Kalimantan society which especially, in Muara Halyung village frequently go through clean water lacking. It becomes worst by water dirtied on wetland aquifer aftermath the seawater intrusion. Wetland water sources become saline and cannot be used for household needs. Organosilica membrane technology is one of methods can be used to remove salt contain in water. This study aims are to investigate the functionalization and organosilica membrane performance from TEOS-MTES which calcined on particularly temperature for wetland saline water desalination. Synthesis of organosilica sol was conducted by sol-gel method. Then the dried sol was calcined at 350°C and 600 °C, and characterized by FTIR (Fourier Transform InfraRed). Subsequently organosilica membrane was applicated for wetland saline water desalination via pervaporation. The result shows organosilica membrane performance was obtained the water flux 10,55 and 0,87 kg.m-2h-1 which calcined at 350 and 600 °C. The salt rejection in all membrane exhibits extremely high over 99%. It evinces the organosilica membrane from TEOS-MTES which calcined at 350 °C is great to applicated for wetland saline water desalination by both of water fluxes and salt rejection showed high.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 988
Author(s):  
Wirginia Tomczak ◽  
Marek Gryta

Application of the membrane distillation (MD) process for the treatment of high-salinity solutions contaminated with oil and surfactants represents an interesting area of research. Therefore, the aim of this study is to investigate the effect of low-concentration surfactants in oil-contaminated high-salinity solutions on the MD process efficiency. For this purpose, hydrophobic capillary polypropylene (PP) membranes were tested during the long-term MD studies. Baltic Sea water and concentrated NaCl solutions were used as a feed. The feed water was contaminated with oil collected from bilge water and sodium dodecyl sulphate (SDS). It has been demonstrated that PP membranes were non-wetted during the separation of pure NaCl solutions over 960 h of the module exploitation. The presence of oil (100–150 mg/L) in concentrated NaCl solutions caused the adsorption of oil on the membranes surface and a decrease in the permeate flux of 30%. In turn, the presence of SDS (1.5–2.5 mg/L) in the oil-contaminated high-salinity solutions slightly accelerated the phenomenon of membrane wetting. The partial pores’ wetting accelerated the internal scaling and affected degradation of the membrane’s structure. Undoubtedly, the results obtained in the present study may have important implications for understanding the effect of low-concentration SDS on MD process efficiency.


2020 ◽  
Vol 981 ◽  
pp. 342-348 ◽  
Author(s):  
Muthia Elma ◽  
Gesit Satriaji Saputro

This work shows the performance of cobalt-silica membranes through water desalination via pervaporation process. The aim of this work is to find out the performance of the cobalt oxide as a templating agent in the silica cobalt membranes for water desalination via pervaporation process. It also aims to investigate the water flux and salt rejection of silica cobalt membranes using artificial saline water. The concentration of cobalt oxide as a template for fabricating cobalt-silica membranes were 5 – 35 wt%. The feed solution applied during pervaporation process were 0.3 – 5 wt% NaCl with operating temperatures of 25, 40 and 60 °C. The silica xerogels were characterized using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET). From the FTIR result, it is known that the higher the concentration of cobalt in the membrane, the more silanol and siloxane groups. Based on BET analysis, Si-Co 35 wt% membrane has largest pore volume (0.129387 cm3g-1). In addition, the highest value of water flux (7.2660 kg.m-2.h-1) and salt rejection (100%) is achieved by Si-Co 5% membrane in 0.3% NaCl feed at 60 °C. The value of water flux decreases and the value of salt rejection increases with increasing feed concentration.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 552
Author(s):  
Marek Gryta

The influence of oil emulsion presence in the water on the course of water desalination by membrane distillation was studied. The feed water was contaminated by oil collected from the bilge water. The impact of feed composition on the wetting resistance of hydrophobic polypropylene membranes was evaluated during long-term studies. Two types of the capillary membranes fabricated by thermally induced phase separation method were tested. It has been found that these membranes were non-wetted during the separation of NaCl solutions over a period of 500 h of modules exploitation. The addition of oil (5–100 mg/L) to the feed caused a progressive decline of the permeate flux up to 30%; however, the applied hydrophobic membranes retained their non-wettability for the consecutive 2400 h of the process operation. It was indicated that several compounds containing the carbonyl group were formed on the membranes surface during the process. These hydrophilic compounds facilitated the water adsorption on the surface of polypropylene which restricted the oil deposition on the membranes used.


Author(s):  
Riana Ayu Kusumadewi ◽  
Suprihanto Notodarmodjo ◽  
Qomarudin Helmy

The continues deficiency of consumable water is a significant issue in developing countries, and contaminated water can result in various diseases, which are often lethal. Solar desalination seems to be a promising method and alternative way for supplying fresh water. <strong>Aim:</strong> The aim of this research is to study heat transfer in desalination system and the quality of feed water, distilled water and brine compared to the quality standard. Feed water consists of salinity 12‰ and 38‰ salinity. <strong>Methodology and Result:</strong> At first, initial characterization of feed water was conducted, then temperature on fourteen points was measured using thermocouples and thermometer so heat transfer rate can be calculated. After that, the final characterization of water production was conducted. From the  observation, it was found that evaporative heat transfer for vacuum pressure of -0.05, -0.1, -0.15, -0.2, -0.25, and -0.3 bar respectively were 173.77, 180.07, 190.79, 481.66, 242.57, and 246.24 W/m2. The result of water quality test of distilled water produced from saline water desalination for some parameters respectively were pH 7.4; turbidity 2.73 NTU; TDS 27.45 mg/L; chloride 84.98 mg/L; Fe 2.13 mg/L; total hardness 0.1698 mg/L; and <em>Escherichia coli</em> 12 cell/mL . <strong>Conclusion, significance and impact study:</strong> It can be concluded that distilled water produced by desalination system was met drinking water quality standard according to Minister of Health Regulation No. 492 of 2010.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012057
Author(s):  
F R Mustalifah ◽  
A Rahma ◽  
Mahmud ◽  
Sunardi ◽  
M Elma

Abstract Pervaporation process is an excellent and potential way applied for desalting acid mine drainage water. Nevertheless, the water flux was reduced gradually due to the issue of membrane fouling. To resolve this problem, cleaning process was chosen to maintain the water flux of silica-pectin membranes. This study aims to recover the water flux and salt rejection of the silica-pectin membranes via chemical cleaning process applied for acid mine drainage water desalination with various temperature of feed water (25-60 °C). Silica-pectin membrane was formulated by employing TEOS functioning as silica precursor and pectin as carbon template from banana peels. Chemical cleaning of the membrane carried out by employing TiO2 solution + UV light radiation for an hour. Performance of the silica-pectin membrane was evaluated via pervaporation process under dead-end system. The performance of silica-pectin banana peels membrane found flux recovery from 10.6 kg.m− 2.h−1 and flux recovery of 17.54 kg.m− 2.h−1. It shows that flux recovery higher than before backwashing process. Also, silica-pectin membrane results in all of the salt rejection <99 %. It is concluded that the chemical backwashing process is important to apply to recover the water flux of membrane, also, this process considers to save and reduce the operational costs.


Membranes ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 101 ◽  
Author(s):  
Mohammed Kadhom ◽  
Noor Albayati ◽  
Suhaib Salih ◽  
Mustafa Al-Furaiji ◽  
Mohamed Bayati ◽  
...  

Reverse osmosis is a major process that produces soft water from saline water, and its output represents the majority of the overall desalination plants production. Developing efficient membranes for this process is the aim of many research groups and companies. In this work, we studied the effect of adding cellulose micro crystals (CMCs) and cellulose nano crystals (CNCs) to the support layer and thin film nanocomposite (TFN) membrane on the desalination performance. SEM, TEM, ATR-FTIR, and contact angle measurements were used to characterize the membrane’s properties; and membrane’s performance were evaluated by water flux and NaCl rejection. Filling 2% of CNCs gel in the support layer improved the water flux by +40%, while salt rejection maintained almost the same, around 95%. However, no remarkable improvement was gained by adding CNCs gel to m-phenylenediamine (MPD) solution, which was used in TFN membrane preparation. Filling CMCs powder in TFN membrane led to a slight improvement in terms of water flux.


2020 ◽  
Vol 148 ◽  
pp. 07006 ◽  
Author(s):  
Riani Ayu Lestari ◽  
Muthia Elma ◽  
Aulia Rahma ◽  
Dewi Suparsih ◽  
Syarifah Anadhliyah ◽  
...  

Wetland saline water has great potential to overcome water scarcity due to high salinity of intruded seawater. This work determines performance of silica membranes using organo catalyst applied for wetland saline water desalination via pervaporation and investigates the effect of calcination temperatures. These membranes were prepared from precursor tetraethyl orthosilicate (TEOS) for 3 h through sol-gel process refluxed at 0°C (membrane A) and 50°C (membrane B). The sols were dipcoated onto alumina (Al2O3) support for 4 layers followed by calcination for 1 h. Performance of membranes were evaluated by feeding wetland saline water through desalination at room temperature. Results show the water flux for membrane A were 0.27 & 0.15 kg.m-2.h-1 and salt rejection were 97.5 & 99 % as a function of calcination temperature (200 & 250°C), respectively. Furthermore, water flux of membranes B were 0.90 & 0.93 kg.m-2.h-1 and excellent salt rejection (>99.9 %) for both calcination temperatures. The highest water flux and salt rejection were found for membranes B. For both using citric acid under refluxed and calcination process, it gives more vibration of Si-C formation and membrane pores. This membrane is the very first and mesoporous organo silica membranes which is successfully fabricated from organo catalyst.


Sign in / Sign up

Export Citation Format

Share Document