scholarly journals Влияние условий осаждения из паров металлоорганических соединений на получение эпитаксиальных слоев n-CdTe с использованием изопропилиодида

Author(s):  
А.Н. Моисеев ◽  
В.С. Евстигнеев ◽  
А.В. Чилясов ◽  
М.В. Костюнин

The dependence of iodine incorporation in CdTe layers on the deposition conditions during metalorganic vapor phase epitaxy is investigated. The growth of the layers was carried out from dimethylcadmium and diethyltellurium in the hydrogen flow in a vertical reactor with a hot wall condition at a total pressure of 20 kPa. The total iodine concentration was determined by secondary ion mass spectrometry, the electrically active concentration was determined from the Hall effect measurement. The iodine incorporation depends on the crystallographic orientation of the substrate (were studied (100), (310), (111)A, (111)B, (211)A and (211)B), the concentration of the doping precursor (flux range 5·10–8–3·10–6 mol/min), the mole ratio of organometallic compounds (DMCd/DETe=0.25–4), growth temperature (335–390°C) and the walls of the reactor above the pedestal (hot wall zone 290–320°C). The total iodine concentration reached 5·1018 cm–3 and the activation efficiency was ~4 %. After thermal annealing in cadmium vapor at 500°C the activation efficiency was ~100 %.

2000 ◽  
Vol 640 ◽  
Author(s):  
Ying Gao ◽  
S. I. Soloviev ◽  
X. Wang ◽  
C. C. Tin ◽  
T. S. Sudarshan

ABSTRACTBased upon graphite mask, selective aluminum/boron doping of SiC by thermal diffusion has been successfully realized in a temperature range of 1800 to 2100°C. Secondary ion mass spectrometry (SIMS) was used to identify the doping profiles, which showed very high aluminum concentration (5×1019 cm−3) near the surface and linearly graded boron profile up to several micrometers in depth. Hall-effect measurement was also employed to obtain the carrier concentration, which showed more than 1019 cm−3 carrier concentration at room temperature. Cathodoluminescence (CL) image clearly illustrated the locally diffused pattern. In addition, planar p-n diodes based upon this technique were fabricated and current-voltage (I-V) characteristics were measured. Excellent rectification property has been obtained. Built-in voltage of 2.9 V in the formed p-n junction was obtained by capacitance-voltage (C-V) measurement.


Author(s):  
Martin Nyborg ◽  
Kjetil Karlsen ◽  
Kristin Bergum ◽  
Eduard V Monakhov

Abstract Cu2O films deposited by reactive magnetron sputtering with varying Li concentrations have been investigated by a combination of temperature-dependent Hall effect measurement and thermal admittance spectroscopy. As measured by secondary ion mass spectrometry, Li concentrations up to 5x1020 Li/cm3 have been achieved. Li doping significantly alters the electrical properties of Cu2O and increases hole concentration at room temperature for higher Li concentrations. Moreover, the apparent activation energy for the dominant acceptors decreases from around 0.2 eV for undoped or lightly doped Cu2O down to as low as 0.05 eV for higher Li concentrations.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


Author(s):  
Philippe Fragu

The identification, localization and quantification of intracellular chemical elements is an area of scientific endeavour which has not ceased to develop over the past 30 years. Secondary Ion Mass Spectrometry (SIMS) microscopy is widely used for elemental localization problems in geochemistry, metallurgy and electronics. Although the first commercial instruments were available in 1968, biological applications have been gradual as investigators have systematically examined the potential source of artefacts inherent in the method and sought to develop strategies for the analysis of soft biological material with a lateral resolution equivalent to that of the light microscope. In 1992, the prospects offered by this technique are even more encouraging as prototypes of new ion probes appear capable of achieving the ultimate goal, namely the quantitative analysis of micron and submicron regions. The purpose of this review is to underline the requirements for biomedical applications of SIMS microscopy.Sample preparation methodology should preserve both the structural and the chemical integrity of the tissue.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
R. Espinosa ◽  
M. M. Le Beau

We have shown previously that isotope-labelled nucleotides in human metaphase chromosomes can be detected and mapped by imaging secondary ion mass spectrometry (SIMS), using the University of Chicago high resolution scanning ion microprobe (UC SIM). These early studies, conducted with BrdU- and 14C-thymidine-labelled chromosomes via detection of the Br and 28CN- (14C14N-> labelcarrying signals, provided some evidence for the condensation of the label into banding patterns along the chromatids (SIMS bands) reminiscent of the well known Q- and G-bands obtained by conventional staining methods for optical microscopy. The potential of this technique has been greatly enhanced by the recent upgrade of the UC SIM, now coupled to a high performance magnetic sector mass spectrometer in lieu of the previous RF quadrupole mass filter. The high transmission of the new spectrometer improves the SIMS analytical sensitivity of the microprobe better than a hundredfold, overcoming most of the previous imaging limitations resulting from low count statistics.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


Author(s):  
Bruno Schueler ◽  
Robert W. Odom

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) provides unique capabilities for elemental and molecular compositional analysis of a wide variety of surfaces. This relatively new technique is finding increasing applications in analyses concerned with determining the chemical composition of various polymer surfaces, identifying the composition of organic and inorganic residues on surfaces and the localization of molecular or structurally significant secondary ions signals from biological tissues. TOF-SIMS analyses are typically performed under low primary ion dose (static SIMS) conditions and hence the secondary ions formed often contain significant structural information.This paper will present an overview of current TOF-SIMS instrumentation with particular emphasis on the stigmatic imaging ion microscope developed in the authors’ laboratory. This discussion will be followed by a presentation of several useful applications of the technique for the characterization of polymer surfaces and biological tissues specimens. Particular attention in these applications will focus on how the analytical problem impacts the performance requirements of the mass spectrometer and vice-versa.


Author(s):  
S. H. Chen

Sn has been used extensively as an n-type dopant in GaAs grown by molecular-beam epitaxy (MBE). The surface accumulation of Sn during the growth of Sn-doped GaAs has been observed by several investigators. It is still not clear whether the accumulation of Sn is a kinetically hindered process, as proposed first by Wood and Joyce, or surface segregation due to thermodynamic factors. The proposed donor-incorporation mechanisms were based on experimental results from such techniques as secondary ion mass spectrometry, Auger electron spectroscopy, and C-V measurements. In the present study, electron microscopy was used in combination with cross-section specimen preparation. The information on the morphology and microstructure of the surface accumulation can be obtained in a fine scale and may confirm several suggestions from indirect experimental evidence in the previous studies.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Sign in / Sign up

Export Citation Format

Share Document