scholarly journals Адаптивные свойства спайковых нейроморфных сетей с синаптическими связями на основе мемристивных элементов

Author(s):  
К.Э. Никируй ◽  
А.В. Емельянов ◽  
В.В. Рыльков ◽  
А.В. Ситников ◽  
В.А. Демин

AbstractNeuromorphic computing networks (NCNs) with synapses based on memristors (resistors with memory) can provide a much more effective approach to device implementation of various network algorithms as compared to that using traditional elements based on complementary technologies. Effective NCN implementation requires that the memristor resistance can be changed according to local rules (e.g., spike-timing-dependent plasticity (STDP)). We have studied the possibility of this local learning according to STDP rules in memristors based on (Co_0.4Fe_0.4B_0.2)_ x (LiNbO_3)_1 –_ x composite. This possibility is demonstrated on the example of NCN comprising four input neurons and one output neuron. It is established that the final state of this NCN is independent of its initial state and determined entirely by the conditions of learning (sequence of spikes). Dependence of the result of learning on the threshold current of output neuron has been studied. The obtained results open prospects for creating autonomous NCNs capable of being trained to solve complex cognitive tasks.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


2016 ◽  
Vol 94 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Mohsen Alipour ◽  
Fatemeh Adineh ◽  
Hossein Mosatafavi ◽  
Azam Aminabadi ◽  
Hananeh Monirinasab ◽  
...  

Long-term hyperglycemia associates with memory defects via hippocampal cells damaging. The aim of the present study was to examine the effect of 1 month of i.p. injections of AG on passive avoidance learning (PAL) and hippocampal apoptosis in rat. Eighty male rats were divided into 10 groups: control, nondiabetics and STZ-induced diabetics treated with AG (50, 100, 200, and 400 mg/kg, i.p.). PAL and the Bcl-2 family gene expressions were determined. Diabetes resulted in memory and Bcl-2 family gene expression deficits. AG (50 and 100 mg/kg) significantly improved the learning and Bcl-2, Bcl-xl, Bax, and Bak impairment in diabetic rats. However, negative effects were indicated by higher doses of the drug (200 and 400 mg/kg). Present study suggests that 1 month of i.p. injections of lower doses of AG, may improve the impaired cognitive tasks in STZ-induced diabetic rats possibly by modulating Bcl-2 family gene expressions.


Author(s):  
Adriana Keating ◽  
Karen Campbell ◽  
Michael Szoenyi ◽  
Colin McQuistan ◽  
David Nash ◽  
...  

Abstract. Given the increased attention on resilience-strengthening in international humanitarian and development work, there is a growing need to invest in its measurement and the overall accountability of "resilience strengthening" initiatives. We present a framework and tool for measuring community level resilience to flooding, built around the five capitals (5Cs) of the Sustainable Livelihoods Framework. At the time of writing the tool is being tested in 75 communities across 10 countries. Currently 88 potential sources of resilience are measured at the baseline (initial state) and endline (final state) approximately two years later. If a flood occurs in the community during the study period, resilience outcome measures are recorded. By comparing pre-flood characteristics to post flood outcomes, we aim to empirically verify sources of resilience, something which has never been done in this field. There is an urgent need for the continued development of theoretically anchored, empirically verified and practically applicable disaster resilience measurement frameworks and tools so that the field may: a) deepen understanding of the key components of "disaster resilience" in order to better target resilience enhancing initiatives, and b) enhance our ability to benchmark and measure disaster resilience over time, and compare how resilience changes as a result of different capacities, actions and hazards.


Author(s):  
JUN KONG ◽  
DIANXIANG XU ◽  
XIAOQIN ZENG

Poor design has been a major source of software security problems. Rigorous and designer-friendly methodologies for modeling and analyzing secure software are highly desirable. A formal method for software development, however, often suffers from a gap between the rigidity of the method and the informal nature of system requirements. To narrow this gap, this paper presents a UML-based framework for modeling and analyzing security threats (i.e. potential security attacks) rigorously and visually. We model the intended functions of a software application with UML statechart diagrams and the security threats with sequence diagrams, respectively. Statechart diagrams are automatically converted into a graph transformation system, which has a well-established theoretical foundation. Method invocations in a sequence diagram of a security threat are interpreted as a sequence of paired graph transformations. Therefore, the analysis of a security threat is conducted through simulating the state transitions from an initial state to a final state triggered by method invocations. In our approach, designers directly work with UML diagrams to visually model system behaviors and security threats while threats can still be rigorously analyzed based on graph transformation.


2020 ◽  
Vol 245 ◽  
pp. 06005
Author(s):  
Marcin Słodkowski ◽  
Patryk Gawryszewski ◽  
Dominik Setniewski

In this work, we are focusing on assessing the contribution of the initial-state fluctuations of heavy ion collision in the hydrodynamic simulations. We are trying to answer the question of whether the hydrodynamic simulation retains the same level of fluctuation in the final-state as for the initial stage. In another scenario, the hydrodynamic simulations of the fluctuation drowns in the final distribution of expanding matter. For this purpose, we prepared sufficient relativistic hydrodynamic program to study A+A interaction which allows analysing initial-state fluctuations in the bulk nuclear matter. For such an assumption, it is better to use high spatial resolution. Therefore, we applied the (3+1) dimensional Cartesian coordinate system. We implemented our program using parallel computing on graphics cards processors - Graphics Processing Unit (GPU). Simulations were carried out with various levels of fluctuation in initial conditions using the average method of events coming from UrQMD models. Energy density distributions were analysed and the contribution of fluctuations in initial conditions was assessed in the hydrodynamic simulation.


2021 ◽  
Vol 17 (5) ◽  
pp. e1008958
Author(s):  
Alan Eric Akil ◽  
Robert Rosenbaum ◽  
Krešimir Josić

The dynamics of local cortical networks are irregular, but correlated. Dynamic excitatory–inhibitory balance is a plausible mechanism that generates such irregular activity, but it remains unclear how balance is achieved and maintained in plastic neural networks. In particular, it is not fully understood how plasticity induced changes in the network affect balance, and in turn, how correlated, balanced activity impacts learning. How do the dynamics of balanced networks change under different plasticity rules? How does correlated spiking activity in recurrent networks change the evolution of weights, their eventual magnitude, and structure across the network? To address these questions, we develop a theory of spike–timing dependent plasticity in balanced networks. We show that balance can be attained and maintained under plasticity–induced weight changes. We find that correlations in the input mildly affect the evolution of synaptic weights. Under certain plasticity rules, we find an emergence of correlations between firing rates and synaptic weights. Under these rules, synaptic weights converge to a stable manifold in weight space with their final configuration dependent on the initial state of the network. Lastly, we show that our framework can also describe the dynamics of plastic balanced networks when subsets of neurons receive targeted optogenetic input.


Author(s):  
A. R. Balasubramanian ◽  
Javier Esparza ◽  
Mikhail Raskin

AbstractIn rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number B such that all initial configurations of the protocol with at least B agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper [17], Horn and Sangnier prove that the cut-off problem is equivalent to the Petri net reachability problem for protocols with a leader, and in "Image missing" for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to "Image missing" and "Image missing" , respectively. The problem of lowering these upper bounds or finding matching lower bounds is left open. We show that the cut-off problem is "Image missing" -complete for leaderless protocols, "Image missing" -complete for symmetric protocols with a leader, and in "Image missing" for leaderless symmetric protocols, thereby solving all the problems left open in [17].


2021 ◽  
Vol 17 ◽  
pp. 244-252
Author(s):  
Anna Tarasenko ◽  
Oleksandr Karelin ◽  
Manuel Gonzalez Hernández ◽  
Oleksandr Barabash

In this paper, we consider systems with one resource, which can be in several states. The states differ significantly in their processes of mortality, reproduction and mutual influence. For instance, infected elements can have a higher mortality rate than healthy and recovered ones. For cyclic models, in which the initial state of the system coincides with the final state, balance relations are found. They represent a system with functional operators with shift and integrals with degenerate kernels. Modified Fredholm method, proposed in previous works to solve the integral equations of the second type with degenerate kernels and shifts, is applied. Equilibrium position of a system with a three-state resource is found.


Sign in / Sign up

Export Citation Format

Share Document