Modelling of Systems with Elements in Several States

2021 ◽  
Vol 17 ◽  
pp. 244-252
Author(s):  
Anna Tarasenko ◽  
Oleksandr Karelin ◽  
Manuel Gonzalez Hernández ◽  
Oleksandr Barabash

In this paper, we consider systems with one resource, which can be in several states. The states differ significantly in their processes of mortality, reproduction and mutual influence. For instance, infected elements can have a higher mortality rate than healthy and recovered ones. For cyclic models, in which the initial state of the system coincides with the final state, balance relations are found. They represent a system with functional operators with shift and integrals with degenerate kernels. Modified Fredholm method, proposed in previous works to solve the integral equations of the second type with degenerate kernels and shifts, is applied. Equilibrium position of a system with a three-state resource is found.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Renato Maria Prisco ◽  
Francesco Tramontano

Abstract We propose a novel local subtraction scheme for the computation of Next-to-Leading Order contributions to theoretical predictions for scattering processes in perturbative Quantum Field Theory. With respect to well known schemes proposed since many years that build upon the analysis of the real radiation matrix elements, our construction starts from the loop diagrams and exploits their dual representation. Our scheme implements exact phase space factorization, handles final state as well as initial state singularities and is suitable for both massless and massive particles.


Author(s):  
Adriana Keating ◽  
Karen Campbell ◽  
Michael Szoenyi ◽  
Colin McQuistan ◽  
David Nash ◽  
...  

Abstract. Given the increased attention on resilience-strengthening in international humanitarian and development work, there is a growing need to invest in its measurement and the overall accountability of "resilience strengthening" initiatives. We present a framework and tool for measuring community level resilience to flooding, built around the five capitals (5Cs) of the Sustainable Livelihoods Framework. At the time of writing the tool is being tested in 75 communities across 10 countries. Currently 88 potential sources of resilience are measured at the baseline (initial state) and endline (final state) approximately two years later. If a flood occurs in the community during the study period, resilience outcome measures are recorded. By comparing pre-flood characteristics to post flood outcomes, we aim to empirically verify sources of resilience, something which has never been done in this field. There is an urgent need for the continued development of theoretically anchored, empirically verified and practically applicable disaster resilience measurement frameworks and tools so that the field may: a) deepen understanding of the key components of "disaster resilience" in order to better target resilience enhancing initiatives, and b) enhance our ability to benchmark and measure disaster resilience over time, and compare how resilience changes as a result of different capacities, actions and hazards.


Author(s):  
JUN KONG ◽  
DIANXIANG XU ◽  
XIAOQIN ZENG

Poor design has been a major source of software security problems. Rigorous and designer-friendly methodologies for modeling and analyzing secure software are highly desirable. A formal method for software development, however, often suffers from a gap between the rigidity of the method and the informal nature of system requirements. To narrow this gap, this paper presents a UML-based framework for modeling and analyzing security threats (i.e. potential security attacks) rigorously and visually. We model the intended functions of a software application with UML statechart diagrams and the security threats with sequence diagrams, respectively. Statechart diagrams are automatically converted into a graph transformation system, which has a well-established theoretical foundation. Method invocations in a sequence diagram of a security threat are interpreted as a sequence of paired graph transformations. Therefore, the analysis of a security threat is conducted through simulating the state transitions from an initial state to a final state triggered by method invocations. In our approach, designers directly work with UML diagrams to visually model system behaviors and security threats while threats can still be rigorously analyzed based on graph transformation.


2020 ◽  
Vol 245 ◽  
pp. 06005
Author(s):  
Marcin Słodkowski ◽  
Patryk Gawryszewski ◽  
Dominik Setniewski

In this work, we are focusing on assessing the contribution of the initial-state fluctuations of heavy ion collision in the hydrodynamic simulations. We are trying to answer the question of whether the hydrodynamic simulation retains the same level of fluctuation in the final-state as for the initial stage. In another scenario, the hydrodynamic simulations of the fluctuation drowns in the final distribution of expanding matter. For this purpose, we prepared sufficient relativistic hydrodynamic program to study A+A interaction which allows analysing initial-state fluctuations in the bulk nuclear matter. For such an assumption, it is better to use high spatial resolution. Therefore, we applied the (3+1) dimensional Cartesian coordinate system. We implemented our program using parallel computing on graphics cards processors - Graphics Processing Unit (GPU). Simulations were carried out with various levels of fluctuation in initial conditions using the average method of events coming from UrQMD models. Energy density distributions were analysed and the contribution of fluctuations in initial conditions was assessed in the hydrodynamic simulation.


Author(s):  
A. R. Balasubramanian ◽  
Javier Esparza ◽  
Mikhail Raskin

AbstractIn rendez-vous protocols an arbitrarily large number of indistinguishable finite-state agents interact in pairs. The cut-off problem asks if there exists a number B such that all initial configurations of the protocol with at least B agents in a given initial state can reach a final configuration with all agents in a given final state. In a recent paper [17], Horn and Sangnier prove that the cut-off problem is equivalent to the Petri net reachability problem for protocols with a leader, and in "Image missing" for leaderless protocols. Further, for the special class of symmetric protocols they reduce these bounds to "Image missing" and "Image missing" , respectively. The problem of lowering these upper bounds or finding matching lower bounds is left open. We show that the cut-off problem is "Image missing" -complete for leaderless protocols, "Image missing" -complete for symmetric protocols with a leader, and in "Image missing" for leaderless symmetric protocols, thereby solving all the problems left open in [17].


1984 ◽  
Vol 86 ◽  
pp. 128-131
Author(s):  
J.M. Bizau ◽  
F. Wuilleumier ◽  
P. Gerard ◽  
P. Dhez ◽  
B. Carré ◽  
...  

We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.


While the Stark-effect has not been studied so extensively as the Zeeman-effect, either in the experiments or in their interpretations, many of the more prominent features have been observed and have received adequate explanation on the quantum theory. Among these may be mentioned the patterns characteristic of the different series in the singlet system of parhelium. The variety of observed patterns in the Stark-effect, as contrasted with the normal Zeeman-effect found for all series of this system, arises from a differential action of the external electric field on the initial and final states, and a breaking down of the usual selection rule for the azimuthal quantum number. Some simplification is brought about, however, by the fact that only the absolute value of the quantum number m has any meaning in the interpretation of these photographs, since the action of the field is the same for right or left-handed motion of the outer electron in its orbit. This results in asymmetrical patterns for all the lines. The number of components observed in the patterns of individual lines of parhelium is in accord with the theoretical view that the vector j (here equal to l ) is resolved along the direction of the applied field to give the integral m values ranging from - j to + j , and that the usual selection rule holds for m . The displacements and intensities are in excellent agreement with the theoretical calculations based on the perturbation theory of quantum mechanics. The spacing of the sub-levels identified by ± m in the initial state is decidedly irregular in the Stark-effect as compared with the normal Zeeman-effect, where the displacements are proportional to m . The Zeeman order of the levels is usually reversed, in fact, and the spacing is uneven. Displacements in the final state are theoretically very small, and have not been observed with certainty. In the Stark-effect for orthohelium (triplet system) the same group of patterns was observed. An explanation of these observations, which is slightly less satisfactory than that obtained with parhelium, has been made by similar methods, neglecting the electron spin. Thus the m values were again given ranges determined in each case by the l of the outer electron, and not by the j for the whole atom. Most of the plates failed to reveal any of the fine structure of the normal orthohelium spectrum.


2020 ◽  
Vol 498 (1) ◽  
pp. 310-319
Author(s):  
Tirawut Worrakitpoonpon

ABSTRACT We revisit the topic of shape evolution during the spherical collapse of an N-body system. Our main objective is to investigate the critical particle number below which, during a gravitational collapse, the amplification of triaxiality from initial fluctuations is effective, and above which it is ineffective. To this aim, we develop the Lin–Mestel–Shu theory for a system of particles initially with isotropic velocity dispersion and with a simple power-law density profile. We first determine, for an unstable cloud, two radii corresponding to the balance of two opposing forces and their fluctuations: such radii fix the sizes of the non-collapsing region and the triaxial seed from density fluctuations. We hypothesize that the triaxial degree of the final state depends on which radius is dominant prior to the collapse phase leading to a different scheme of the self-consistent shape evolution of the core and the rest of the system. The condition where the two radii are equal therefore identifies the critical particle number, which can be expressed as the function of the parameters of initial state. In numerical work, we can pinpoint such a critical number by comparing the virialized flattening with the initial flattening. The difference between these two quantities agrees with the theoretical predictions only for the power-law density profiles with an exponent in the range [0, 0.25]. For higher exponents, results suggest that the critical number is above the range of simulated N. We speculate that there is an additional mechanism, related to strong density gradients that increases further the flattening, requiring higher N to further weaken the initial fluctuations.


Sign in / Sign up

Export Citation Format

Share Document