scholarly journals Маска на основе эпитаксиального слоя Si для самокаталитического роста нитевидных нанокристаллов на подложках GaAs (111)B и (100)

Author(s):  
Е.А. Емельянов ◽  
А.Г. Настовьяк ◽  
М.О. Петрушков ◽  
М.Ю. Есин ◽  
Т.А. Гаврилова ◽  
...  

GaAs nanowire (NW) self-catalyzed growth on GaAs (111) B and GaAs (100) substrates was carried out by molecular beam epitaxy. A mask for the self-catalyzed NW growth was created by oxidizing an epitaxial silicon layer grown on the GaAs surface by molecular beam epitaxy (MBE). Silicon oxidation was realized in an atmosphere of purified air under normal conditions without moving the structures out from the vacuum system volume of the molecular beam epitaxy chamber. The oxidation process of a silicon layer was studied using single-wave and spectral ellipsometry and the surface morphology of oxidized silicon was studied by atomic force microscopy. Substrates with NWs were studied by scanning electron microscopy. The NW density was demonstrated to be 2.6•107 cm-2 and 3•107 cm-2 for (111)B and (100), respectively.

1979 ◽  
Vol 34 (11) ◽  
pp. 740-741 ◽  
Author(s):  
Y. Katayama ◽  
Y. Shiraki ◽  
K. L. I. Kobayashi ◽  
K. F. Komatsubara ◽  
N. Hashimoto

Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 215
Author(s):  
Rajeev R. Kosireddy ◽  
Stephen T. Schaefer ◽  
Marko S. Milosavljevic ◽  
Shane R. Johnson

Three InAsSbBi samples are grown by molecular beam epitaxy at 400 °C on GaSb substrates with three different offcuts: (100) on-axis, (100) offcut 1° toward [011], and (100) offcut 4° toward [011]. The samples are investigated using X-ray diffraction, Nomarski optical microscopy, atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The InAsSbBi layers are 210 nm thick, coherently strained, and show no observable defects. The substrate offcut is not observed to influence the structural and interface quality of the samples. Each sample exhibits small lateral variations in the Bi mole fraction, with the largest variation observed in the on-axis growth. Bismuth rich surface droplet features are observed on all samples. The surface droplets are isotropic on the on-axis sample and elongated along the [011¯] step edges on the 1° and 4° offcut samples. No significant change in optical quality with offcut angle is observed.


1998 ◽  
Vol 512 ◽  
Author(s):  
N. Grandjean ◽  
M. Leroux ◽  
J. Massies ◽  
M. Mesrine ◽  
P. Lorenzini

ABSTRACTAmmonia as nitrogen precursor has been used to grow III-V nitrides by molecular beam epitaxy (MBE) on c-plane sapphire substrates. The efficiency of NH3 has been evaluated allowing the determination of the actual V/III flux ratio used during the GaN growth. The effects of the V/III ratio variation on the GaN layer properties have been investigated by photoluminescence (PL), Hall measurements, atomic force microscopy (AFM), and secondary ion mass spectroscopy (SIMS). It is found that a high V/III ratio leads to the best material quality. Optimized GaN thick buffer layers have been used to grow GaN/AlGaN quantum well (QW) heterostructures. Their PL spectra exhibit well resolved emission peaks for QW thicknesses varying from 3 to 15 monolayers. From the variation of the QW energies as a function of well width, a piezoelectric field of 450 kV/cm is deduced.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yong-Jin Cho ◽  
Alex Summerfield ◽  
Andrew Davies ◽  
Tin S. Cheng ◽  
Emily F. Smith ◽  
...  

Abstract We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.


2008 ◽  
Vol 1068 ◽  
Author(s):  
Jean-Christophe Moreno ◽  
Eric Frayssinet ◽  
Fabrice Semond ◽  
Jean Massies

ABSTRACTIn this work, we present a study of epitaxial Aluminium Nitride (AlN) for thin film bulk acoustic wave (BAW) applications. Molecular beam epitaxy (MBE) was used to perform high crystalline quality AlN thin films growth on different silicon substrate preparations. A morphological study was performed by atomic force microscopy (AFM) and scanning electron microscopy (SEM), while structural properties and acoustic wave speed were respectively assessed by X-ray diffraction and acoustic picoseconds.


Sign in / Sign up

Export Citation Format

Share Document