scholarly journals The Drag Forces on a Taylor Bubble Rising Steadily in Vertical Pipes

2021 ◽  
Vol 3 (4) ◽  
pp. 1-1
Author(s):  
Abdullah Abbas Kendoush ◽  

By the adoption of a drag-buoyancy equality model, analytical solutions were obtained for the drag coefficients (CD) of Taylor bubbles rising steadily in pipes. The obtained solutions were functions of the geometry of the Taylor bubble and the gas volume fraction. The solutions were applicable at a wide range of Capillary numbers. The solution was validated by comparison with experimental data of other investigators. All derived drag formulas were subject to the condition that Bond number >4, for air-water systems.

2020 ◽  
Vol 160 ◽  
pp. 561-570 ◽  
Author(s):  
Xiaobo Zeng ◽  
Guangming Fan ◽  
Junxiu Xu ◽  
Antai Liu ◽  
Yifan Xu ◽  
...  

2014 ◽  
Vol 763 ◽  
pp. 254-285 ◽  
Author(s):  
Damien Colombet ◽  
Dominique Legendre ◽  
Frédéric Risso ◽  
Arnaud Cockx ◽  
Pascal Guiraud

AbstractThe present work focuses on the collective effect on both bubble dynamics and mass transfer in a dense homogeneous bubble swarm for gas volume fractions${\it\alpha}$up to 30 %. The experimental investigation is carried out with air bubbles rising in a square column filled with water. Bubble size and shape are determined by means of a high-speed camera equipped with a telecentric lens. Gas volume fraction and bubble velocity are measured by using a dual-tip optical probe. The combination of these two techniques allows us to determine the interfacial area between the gas and the liquid. The transfer of oxygen from the bubbles to the water is measured from the time evolution of the concentration of oxygen dissolved in water, which is obtained by means of the gassing-out method. Concerning the bubble dynamics, the average vertical velocity is observed to decrease with${\it\alpha}$in agreement with previous experimental and numerical investigations, while the bubble agitation turns out to be weakly dependent on ${\it\alpha}$. Concerning mass transfer, the Sherwood number is found to be very close to that of a single bubble rising at the same Reynolds number, provided the latter is based on the average vertical bubble velocity, which accounts for the effect of the gas volume fraction on the bubble rise velocity. This conclusion is valid for situations where the diffusion coefficient of the gas in the liquid is very low (high Péclet number) and the dissolved gas is well mixed at the scale of the bubble. It is understood by considering that the transfer occurs at the front part of the bubbles through a diffusion layer which is very thin compared with all flow length scales and where the flow remains similar to that of a single rising bubble.


2018 ◽  
Vol 845 ◽  
pp. 226-244 ◽  
Author(s):  
Biljana Gvozdić ◽  
Elise Alméras ◽  
Varghese Mathai ◽  
Xiaojue Zhu ◽  
Dennis P. M. van Gils ◽  
...  

We present results on the global and local characterisation of heat transport in homogeneous bubbly flow. Experimental measurements were performed with and without the injection of ${\sim}2.5~\text{mm}$ diameter bubbles (corresponding to bubble Reynolds number $Re_{b}\approx 600$) in a rectangular water column heated from one side and cooled from the other. The gas volume fraction $\unicode[STIX]{x1D6FC}$ was varied in the range 0 %–5 %, and the Rayleigh number $Ra_{H}$ in the range $4.0\times 10^{9}{-}1.2\times 10^{11}$. We find that the global heat transfer is enhanced up to 20 times due to bubble injection. Interestingly, for bubbly flow, for our lowest concentration $\unicode[STIX]{x1D6FC}=0.5\,\%$ onwards, the Nusselt number $\overline{Nu}$ is nearly independent of $Ra_{H}$, and depends solely on the gas volume fraction $\unicode[STIX]{x1D6FC}$. We observe the scaling $\overline{Nu}\,\propto \,\unicode[STIX]{x1D6FC}^{0.45}$, which is suggestive of a diffusive transport mechanism, as found by Alméras et al. (J. Fluid Mech., vol. 776, 2015, pp. 458–474). Through local temperature measurements, we show that the bubbles induce a huge increase in the strength of liquid temperature fluctuations, e.g. by a factor of 200 for $\unicode[STIX]{x1D6FC}=0.9\,\%$. Further, we compare the power spectra of the temperature fluctuations for the single- and two-phase cases. In the single-phase cases, most of the spectral power of the temperature fluctuations is concentrated in the large-scale rolls/motions. However, with the injection of bubbles, we observe intense fluctuations over a wide range of scales, extending up to very high frequencies. Thus, while in the single-phase flow the thermal boundary layers control the heat transport, once the bubbles are injected, the bubble-induced liquid agitation governs the process from a very small bubble concentration onwards. Our findings demonstrate that the mixing induced by high Reynolds number bubbles ($Re_{b}\approx 600$) offers a powerful mechanism for heat transport enhancement in natural convection systems.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 650
Author(s):  
Guangtai Shi ◽  
Dandan Yan ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Zekui Shu

The gas volume fraction (GVF) often changes from time to time in a multiphase pump, causing the power capability of the pump to be increasingly affected. In the purpose of revealing the pressure load characteristics of the multiphase pump impeller blade with the gas-liquid two-phase case, firstly, a numerical simulation which uses the SST k-ω turbulence model is verified with an experiment. Then, the computational fluid dynamics (CFD) software is employed to investigate the variation characteristics of static pressure and pressure load of the multiphase pump impeller blade under the diverse inlet gas volume fractions (IGVFs) and flow rates. The results show that the effect of IGVF on the head and hydraulic efficiency at a small flow rate is obviously less than that at design and large flow rates. The static pressure on the blade pressure side (PS) is scarcely affected by the IGVF. However, the IGVF has an evident effect on the static pressure on the impeller blade suction side (SS). Moreover, the pump power capability is descended by degrees as the IGVF increases, and it is also descended with the increase of the flow rate at the impeller inlet. Simultaneously, under the same IGVF, with the increase of the flow rate, the peak value of the pressure load begins to gradually move toward the outlet and its value from hub to shroud is increased. The research results have important theoretical significance for improving the power capability of the multiphase pump impeller.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Sowmitra Singh ◽  
Tiffany Fourmeau ◽  
Jin-Keun Choi ◽  
Georges L. Chahine

This paper addresses the concept of thrust augmentation through bubble injection into an expanding-contracting nozzle with a throat. The presence of a throat in an expanding-contracting nozzle can result in flow transition from the subsonic regime to the supersonic regime (choked conditions) for a bubbly mixture flow, which may result in a substantial increase in jet thrust. This increase would primarily arise from the fact that the injected gas bubbles expand drastically in the supersonic region of the flow. In the current work, an analytical 1D model is developed to capture choked bubbly flow in an expanding-contracting nozzle with a throat. The study provides analytical and numerical support to analytical observations and serves as a design tool for nozzle geometries that can achieve efficient choked bubbly flows through nozzles. Starting from the 1D mixture continuity and momentum equations, along with an equation of state for the bubbly mixture, expressions for mixture velocity and gas volume fraction were derived. Starting with a fixed geometry and an imposed upstream pressure for a choked flow in the nozzle, the derived expressions were iteratively solved to obtain the exit pressures and velocities for different injected gas volume fractions. The variation of thrust enhancement with the injected gas volume fraction was also studied. Additionally, the geometric parameters were varied (area of the exit, area of the throat) to understand the influence of the nozzle geometry on the thrust enhancement and on the flow conditions at the inlet. This parametric study provides a performance map that can be used to design a bubble augmented waterjet propulsor, which can achieve and exploit supersonic flow. It was found that the optimum geometry for choked flows, unlike the optimum geometry under purely subsonic flows, had a dependence on the injected gas volume fraction. Furthermore, for the same injected gas volume fraction the optimum geometry for choked flows resulted in greater thrust enhancement compared to the optimum geometry for purely subsonic flows.


2021 ◽  
Vol 15 ◽  
pp. 223-232
Author(s):  
Sharul Sham Dol ◽  
Niraj Baxi ◽  
Mior Azman Meor Said

By introducing a multiphase twin screw pump as an artificial lifting device inside the well tubing (downhole) for wet gas compression application; i.e. gas volume fraction (GVF) higher than 95%, the unproductive or commercially unattractive gas wells can be revived and made commercially productive once again. Above strategy provides energy industry with an invaluable option to significantly reduce greenhouse gas emissions by reviving gas production from already existing infrastructure thereby reducing new exploratory and development efforts. At the same time above strategy enables energy industry to meet society’s demand for affordable energy throughout the critical energy transition from predominantly fossil fuels based resources to hybrid energy system of renewables and gas. This paper summarizes the research activities related to the applications involving multiphase twin screw pump for gas volume fraction (GVF) higher than 95% and outlines the opportunity that this new frontier of multiphase fluid research provides. By developing an understanding and quantifying the factors that influence volumetric efficiency of the multiphase twin screw pump, the novel concept of productivity improvement by a downhole wet gas compression using above technology can be made practicable and commercially more attractive than other production improvement strategies available today. Review and evaluation of the results of mathematical and experimental models for multiphase twin screw pump for applications with GVF of more than 95% has provided valuable insights in to multiphase physics in the gap leakage domains of pump and this increases confidence that novel theoretical concept of downhole wet gas compression using multiphase twin screw pump that is described in this paper, is practically achievable through further research and improvements.


2019 ◽  
Author(s):  
Luis E. Granado ◽  
Antonio Drago ◽  
Faycal Smail ◽  
Abdelhak Khalfaoui ◽  
Giovanni Fidanza ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Wenlin Wang ◽  
Fangtian Wang ◽  
Bin Zhao ◽  
Gang Li

Mine gas overflow is a serious threat to the safe and efficient longwall mining of gassy coal seams. Based on the field mining conditions and gas extraction of the fully mechanized top-coal caving face of a gassy coal mine, the space volume fraction distribution and emission (extraction rate) of gas in the face were tested by an arrangement of measuring points in the stereo grid. The isograms of gas volume fraction distribution for each measurement section and air direction in the face are drawn. The research shows that each measurement section gas volume fraction distribution is presented for an asymmetric concave curve along the vertical direction of the coal wall in the air-inlet side and the air-return side of the face; on the working face air-return side, the determination of gas volume fraction distribution of the section appears as falling straight line along the vertical direction of the coal wall. Before the first weighting, the absolute quantity of gas emission in the working face increased with the advancing of the working face, reached the maximum at the time of the first weighting, and then remained stable.


Sign in / Sign up

Export Citation Format

Share Document