scholarly journals Dimensional, Mechanical and LCA Characterization of Terrazzo Tiles along with Glass and Construction and Demolition Waste (CDW)

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Paola Stabile ◽  
Francesco Radica ◽  
Luigi Ranza ◽  
Michael R. Carroll ◽  
Carlo Santulli ◽  
...  

In this work, two types of wastes were introduced, namely, glass from municipal waste and Construction and Demolition Waste (CDW). The latter, which was obtained from rubble generated by the seismic events occurred in Central Italy in 2016, was introduced in two configurations, the single-layer and the double-layer of the cement-based Terrazzo tiles. A maximum of 77% of waste introduction was proven to be possible, therefore creating the possibility of obtaining construction products including high quantities of secondary raw materials, coupled with a valuable aesthetic aspect. The tiles represent a novel CDW upcycling application and follow the EU recommendations to improve the circular economy in the building sector. In particular, the products obtained showed dimensional conformity in the specifications and mechanical performance in the case of double-layer tiles as required by the envisaged use in the flooring (EN 13748-1). A life cycle analysis (LCA) clarified the possible advantages in terms of reduced resource depletion (RD) and global warming potential (GWP). The evaluation at the aggregate/glass matrix interface indicated good performance of the tiles, demonstrating the readiness for industrial production and market introduction.

Detritus ◽  
2021 ◽  
pp. 40-50
Author(s):  
Ababaikere Abudureheman ◽  
Paola Stabile ◽  
Michael Robert Carroll ◽  
Carlo Santulli ◽  
Eleonora Paris

Construction and Demolition Waste (CDW) originating from the rubble produced by the 2016 seismic events in the Marche Region (Central Italy) has been studied, focusing on its mineralogical and chemical characteristics, to investigate its recycling potentials as a component for eco-sustainable building material or in the glass industry. The aim was to obtain a full characterization of the behaviour of this material at high T in order to determine the most advantageous conditions for vitrification, considered as an effective process for volume reduction as well as for immobilization of potentially hazardous elements. Vitrification experiments, carried out with thermal treatments as function of temperature/duration/particle size and aimed at amorphization, were carried out under atmospheric conditions, at different temperatures (1000-1250°C) and durations (2-8 hours). The study demonstrated that mineralogical composition remains homogeneous for grainsize <4 mm, thus suggesting that no sieving is necessary for recycling of the fine fractions, which are the most difficult to treat. Vitrification, although not achieved for the CDW sample up to 1250°C, due to high-Ca and low-Si contents, demonstrated that this CDW can produce an interesting refractory material and a porous/insulating material. However, experiments showed that full vitrification can be easily achieved by mixing urban waste glass and CDW, suggesting applications in the glass industry. Based on the chemical and mineralogical features of the products, other significant upgrading alternatives of recycling the CDW in different fields of applications are highlighted.


2020 ◽  
Vol 12 (19) ◽  
pp. 7903
Author(s):  
Maria Cristina Collivignarelli ◽  
Giacomo Cillari ◽  
Paola Ricciardi ◽  
Marco Carnevale Miino ◽  
Vincenzo Torretta ◽  
...  

The concrete industry is a core element of the building sector, but it has to deal with the increasing attention on the environmental issues related to the production process: increasing energy efficiency and the adoption of alternative fuels or raw materials represent the most relevant solutions. The present work analyses physical, mechanical, and environmental performances of concrete incorporating residues derived from four main sources (construction and demolition waste, residues from waste treatment, metallurgical industry by-products, and others), as substitutes of either fine or coarse aggregates. Fine aggregates showed the highest number of alternatives and replacement level, with the relevant impact on concrete properties; coarse aggregates, however, always reach a complete replacement, with the exclusion of glass that highly affects the mechanical performance. Construction and metallurgical industry categories are the main sources of alternative materials for both the components, with ceramic and lead slag reaching a full replacement for fine and coarse aggregates.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2247
Author(s):  
Fernando da Silva Souza ◽  
José Maria Franco de Carvalho ◽  
Gabriela Grotti Silveira ◽  
Vitória Cordeiro Araújo ◽  
Ricardo André Fiorotti Peixoto

The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates’ performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.


2021 ◽  
Vol 13 (14) ◽  
pp. 7572
Author(s):  
Gigliola D’Angelo ◽  
Marina Fumo ◽  
Mercedes del Rio Merino ◽  
Ilaria Capasso ◽  
Assunta Campanile ◽  
...  

Demolition activity plays an important role in the total energy consumption of the construction industry in the European Union. The indiscriminate use of non-renewable raw materials, energy consumption, and unsustainable design has led to a redefinition of the criteria to ensure environmental protection. This article introduces an experimental plan that determines the viability of a new type of construction material, obtained from crushed brick waste, to be introduced into the construction market. The potential of crushed brick waste as a raw material in the production of building precast products, obtained by curing a geopolymeric blend at 60 °C for 3 days, has been exploited. Geopolymers represent an important alternative in reducing emissions and energy consumption, whilst, at the same time, achieving a considerable mechanical performance. The results obtained from this study show that the geopolymers produced from crushed brick were characterized by good properties in terms of open porosity, water absorption, mechanical strength, and surface resistance values when compared to building materials produced using traditional technologies.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1282
Author(s):  
Marta Lazzaroni ◽  
Barbara Nisi ◽  
Daniele Rappuoli ◽  
Jacopo Cabassi ◽  
Orlando Vaselli

Mercury is a toxic and noxious element and is the only metal that naturally occurs as gas. One of the most challenging topics (included in the United Nations Minimata convention) is to understand the adsorption–release processes of manmade materials (e.g., concrete, bricks, tiles, painting). Adsorption of Hg by construction and demolition waste materials has recently been studied, but investigations on how much Hg0 can be released from these products are rather poor. The abandoned mining site of Abbadia San Salvatore (Siena, central Italy) where, for about one century, cinnabar was roasted to produce liquid mercury, is known for the high concentrations of (i) Hg0 in edifices and structures and (ii) total and leachate Hg in synthetic materials. In the present paper, a new, simple and low-cost method to measure the amount of GEM (Gaseous Elemental Mercury) released from anthropic materials (concrete, wall rocks, and tiles) located in the Hg0-rich environments of the former mining site, is proposed. The efficiency of a specific paint that was supposed to act as blocking agent to Hg0 was also tested.


China's industries are rapidly growing, and with that generation of waste is also increasing. Associated environmental concerns over construction and demolition waste, industrial waste such as fly ash generated by thermal power plants need to be utilized in some form. Autoclave aerated concrete is a lightweight material that can be used as an alternative building material; it is widely composed of raw materials such as cement, quicklime, sand, gypsum, and an aerating agent like aluminum powder. In this study, 40% waste will be utilized, Construction waste (5%,10%,15%....40%) and Fly ash (35%,30%,25….0%)respectively, keeping the aerating agent constant at 0.06% that is aluminum powder. The compressive strength of the material will be checked after autoclaving at 2000 temperature and 1Mpa Pressure for 6 hours. The study aims to design an autoclave aerated concrete material and to recycle the waste generated by various industries mainly from the construction sector.


2021 ◽  
Vol 9 (209) ◽  
pp. 1-16
Author(s):  
Samira Mansur Monteiro de Barros

The problems arising from construction and demolition waste have always been in our country. The civil construction industry is the sector that generates the most waste that impacts society and is the one that consumes the most raw materials. As a result, it is necessary and extremely important that there is a sustainable management of construction waste. The irregular dispositions of these residues cause many negative impacts to the environment, since they are often thrown in vacant lots, permanent preservation areas, roads and public places, harming the quality of life of the population. Recycling can generate a significant economic advantage in relation to the final destination both in regular deposits and mainly in relation to the irregular ones that cause so much damage to the environment. This study sought to collect information on the current situation on construction waste. And in order to be developed, the present work used bibliographic research in books, specialized magazines, periodicals, and electronic media. Concluding in the final considerations, in which vital points of the research are presented followed by the stimulations the continuity of the studies and the reflections on the generation of solid residues in the civil construction.


◽  
2016 ◽  
Author(s):  
M Marroccoli ◽  
◽  
A Telesca ◽  
N Ibris ◽  
T Naik ◽  
...  

2016 ◽  
Vol 6 (6) ◽  
pp. 1249-1252 ◽  
Author(s):  
B. Rouhi Broujeni ◽  
G. A. Omrani ◽  
R. Naghavi ◽  
S. S. Afraseyabi

Increasing building construction raises concerns about construction and demolition (C&D) waste management. To assess this issue the building components, the collection schemes, their recycling and disposal should be investigated. In order to manage C&D wastes, paying attention to how this kind of wastes is disposed is imperative for their correct identification. Inattention, lack of organization and proper transport and sanitary disposal of construction and demolition waste lead to problems such as accumulation of construction waste in the streets. However, more than 90 percent of the potential for recycling and re-using as raw materials is provided. Environmental Protection Agency (EPA) has classified C&D wastes into three categories: non-dangerous waste, hazardous wastes and semi-hazardous wastes. Currently in Tehran, an average of about 50,000 tons per day of construction and demolition wastes are produced from which over 30,000 tons per day are dumped in landfills. According to this research more than 57% of these wastes are placed in the first category (non-dangerous waste) and have the potential for being recycled and reused. On the other hand, items that are placed in the second category shall be managed based on the existing laws. This article provides some management solutions including proposing methods for collecting and reusing construction waste in accordance with current market needs in Iran.


Sign in / Sign up

Export Citation Format

Share Document