Development of a Microwave Treatment Technique for Bacterial Decontamination of Raw Meat

Author(s):  
Yury Shamis ◽  
Alex Taube ◽  
Yury Shramkov ◽  
Natasa Mitik-Dineva ◽  
Barbara Vu ◽  
...  

The present study developed and verified a 'cold' microwave (MW) treatment that could lead to the inactivation of two common pathogenic species of bacteria, Escherichia coli and Staphylococcus aureus, in raw meats. A number of experimental conditions were designed and tested to maximise MW exposure without overheating the samples. The non-thermal effect was maximised by multiple exposure to attain efficient MW threshold intensities. It was shown that at sub-lethal temperatures repeated exposure using high frequency MW radiation was significantly more effective in decontaminating bacteria in raw meats compared to a single exposure. It was concluded that non thermal inactivation of pathogenic bacteria in raw meats could be achieved at defined conditions using high frequency MW radiation.

Author(s):  
Vanessa Ribeiro Urbano ◽  
Milena Guedes Maniero ◽  
José Roberto Guimarães ◽  
Luis J. del Valle ◽  
Montserrat Pérez-Moya

Sulfaquinoxaline (SQX) has been detected in environmental water samples, where its side effects are still unknown. To the best of our knowledge, its oxidation by Fenton and photo-Fenton processes has not been previously reported. In this study, SQX oxidation, mineralization, and toxicity (Escherichia coli and Staphylococcus aureus bacteria) were evaluated at two different setups: laboratory bench (2 L) and pilot plant (15 L). The experimental design was used to assess the influence of the presence or absence of radiation source, as well as different H2O2 concentrations (94.1 to 261.9 mg L−1). The experimental conditions of both setups were: SQX = 25 mg L−1, Fe(II) = 10 mg L−1, pH 2.8 ± 0.1. Fenton and photo-Fenton were suitable for SQX oxidation and experiments resulted in higher SQX mineralization than reported in the literature. For both setups, the best process was the photo-Fenton (178.0 mg L−1 H2O2), for which over 90% of SQX was removed, over 50% mineralization, and bacterial growth inhibition less than 13%. In both set-ups, the presence or absence of radiation was equally important for sulfaquinoxaline oxidation; however, the degradation rates at the pilot plant were between two to four times higher than the obtained at the laboratory bench.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


2008 ◽  
Vol 71 (7) ◽  
pp. 1401-1405 ◽  
Author(s):  
JEREMY A. OBRITSCH ◽  
DOJIN RYU ◽  
LUCINA E. LAMPILA ◽  
LLOYD B. BULLERMAN

The antimicrobial activities of four long-chain food-grade polyphosphates were studied at concentrations allowed in the food industry (<5,000 ppm) in defined basal media by determining the inhibition of growth of three gram-negative and four gram-positive spoilage and pathogenic bacteria. Both generation time and lag phase of Escherichia coli K-12, E. coli O157: H7, and Salmonella Typhimurium were increased with all of the polyphosphates tested. Bacillus subtilis and Staphylococcus aureus were more sensitive to polyphosphates, but not in all cases, with multiphased growth. The growth of Lactobacillus plantarum was inhibited by polyphosphates at concentrations above 750 ppm, but the lag time of Listeria monocytogenes was shortened by the presence of polyphosphates. No single polyphosphate was maximally inhibitory against all bacteria. Polyphosphates with chain lengths of 12 to 15 were significantly different from those with chain lengths of 18 to 21 depending on the organism and concentrations of polyphosphate used. Overall, higher polyphosphate concentrations resulted in greater inhibition of bacterial growth.


2000 ◽  
Vol 67 (4) ◽  
pp. 619-623 ◽  
Author(s):  
JEFF W. TYLER ◽  
JEFF LAKRITZ ◽  
DOUGLAS E. HOSTETLER ◽  
VICTORIA DOUGLAS ◽  
DUSTY M. WEAVER ◽  
...  

The timely ingestion and absorption of colostral immunoglobulin is a critical determinant of neonatal calf health. Calves are born without appreciable concentrations of the serum immunoglobulins needed to protect against pathogenic bacteria, viruses and protozoa (Tyler & Parish, 1995). The beneficial effect of passive transfer of colostral immunoglobulin also extends beyond the neonatal period and persists into juvenile and adult life (Robison et al. 1988; Tyler et al. 1998; DeNise et al. 1989). Calves with failure of passive transfer, defined as serum protein < 50 g/l or serum IgG < 10 g/l, have increased mortality risks that persist until 10 weeks of age (Tyler et al. 1998).Several diseases are potentially spread by the ingestion of colostrum, including bovine leukosis and Johne's disease (Perrin & Polack, 1988; Streeter et al. 1995). In one study 22% of latently infected cows were demonstrated to shed Mycobacterium paratuberculosis in their colostrum (Streeter et al. 1995). Optimal programmes to prevent and eradicate these diseases generally include the provision that calves are given colostrum derived from cows of known negative disease status. Pasteurization or heat treatment of colostrum may provide a mechanism whereby calves are provided with protection against neonatal disease without creating undue potential for infection by chronic, economically relevant diseases.Attempts to heat disinfect colostrum are common in goat herds (MacKenzie et al. 1987). Pasteurization has been demonstrated to be effective against the caprine arthritis–encephalomyelitis virus (Adams et al. 1983; MacKenzie et al. 1987). Although Myco. paratuberculosis appears to resist pasteurization, this form of processing has been demonstrated to decrease the likelihood of positive colostral cultures for Myco. paratuberculosis under experimental conditions (Meylan et al. 1996). Sterilizing the milk and colostrum given to calves is a logical and reasonable strategy to prevent transmission of infectious microorganisms. The potential disadvantage of heat treating colostrum is that the immunoglobulins in colostrum may become denatured (Smith & Sherman, 1994). Pasteurization causes only a slight decrease in the colostral concentration of IgG in cattle (Meylan et al. 1996); however, the biological behaviour of these pasteurized immunoglobulins has not been critically examined. Therefore, we cannot be completely confident that immunoglobulin absorption, persistence in serum and biological activity are unchanged by this processing.The goal of this study was to determine the effect of pasteurization at 76 and 63 °C on the absorption of IgG from colostrum. Should these procedures decrease immunoglobulin absorption, the use of pasteurization in disease eradication programmes would require increased efforts to optimize the passive transfer of immunoglobulin.


1970 ◽  
Vol 18 ◽  
pp. 16-20
Author(s):  
BA Omogbai ◽  
FA Eze

Context: Plant based antimicrobial represent a vast untapped source for medicines and further exploration of plant antimicrobial neeto occur. Evolvulus alsinoides (L) (Convolvulaceae) is a perennial herb is used in traditional medicine in East Asia, India, Africa and Philippines to cure fever, cough, cold, venereal diseases, azoospermia, adenitis and dementia.   Objective: The objective of this research was to evaluate the antimicrobial activity of the extracts of E. alsinoides on some clinical microbial isolates.   Materials and Methods: The ed thanolic and aqueous extracts of the whole plant (leaves and twigs) were analysed for alkanoids, tannins, glycosides, steroids, flavonoids, saponins, volatile oil and resins. The determination of antibacterial activity was done using the agar well diffusion technique. Pure cultures of pathogenic bacteria such as Bacillus cereus, Staphylococcus aureus, Micrococcus leutus, Klebsiella Pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi were used for antibacterial activity assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).   Results: The ethanolic extract of the plant had MIC values ranging from 16 mg/ml to 512.5 mg/ml. The least MIC was 16mg-ml against Salmonella typhi while Bacillus cereus and Staphylococcus aureus showed the highest MIC of 512.5 mg-ml. In the aqueous extract the MIC ranged between 512.5 to >1025 mg/ml. Salmonella typhi, Micrococcus luteus and Staphylococcus aureus were not inhibited by the water extract. Phytochemical result showed ethanol to be a better solvent for the extraction of the bioactive agents in this plant which include: glycosides, alkaloids, saponins, tannins, flavonoids and volatile oil.   Conclusion: In this study the gram-negative organisms had the lowest MICs and MBCs. This suggests their higher susceptibility to the extract of this plant. On the basis of the result obtained in this investigation it can be concluded that ethanol extract of Evolvulus alsinoides had significant in vitro broad spectrum antimicrobial activity.   Keywords: Evolvulus alsinoides; Phytochemical screening; Antibacterial activity. DOI: http://dx.doi.org/10.3329/jbs.v18i0.8769 JBS 2010; 18(0): 16-20


1976 ◽  
Vol 31 (12) ◽  
pp. 1690-1695 ◽  
Author(s):  
F. W. Nees ◽  
M. Buback

AbstractThe near infrared absorption of pure ethylene in the region of the second overtone of the C-H stretching fundamentals (8200 cm-1 to 9500 cm-1) was measured at supercritical temperatures (Tc = 9.5 °C) between 22 °C and 200 °C from 0.7 bar to 3000 bar. The density and temperature dependence of bandshape, maximum frequency and absorption intensity are reported and discussed. The bands observed within a wide range of experimental conditions are assigned to combination and overtone modes. The molar integrated intensity B̅λ determined between the wavelength of maximum absorption and the high frequency absorption boundary was observed to be independent of pressure and temperature. This enables spectroscopic concentration determinations on ethylene in high pressure - high temperature phase equilibria and reactions.


1987 ◽  
Vol 62 (3) ◽  
pp. 1201-1205 ◽  
Author(s):  
S. D. Ghazanshahi ◽  
S. M. Yamashiro ◽  
V. Z. Marmarelis

Previous applications of high-frequency oscillatory ventilation (HFOV) have used cyclic forcings with the frequency of oscillation considered to be a fundamental parameter. A question that is addressed in the present study is whether or not periodicity is an essential requirement for this mode of ventilation to occur. It was found possible to adequately ventilate anesthetized and paralyzed cats with volume excursions below the dead-space level using a random band-limited forcing. Experimental conditions were close to a constant flow variance (VARF) state, and arterial CO2 tension varied linearly as a function of the ratio of noise bandwidth and VARF. Periodicity per se did not appear to be a requirement for HFOV to occur, a result consistent with predictions of Taylor dispersion theory.


2019 ◽  
Vol 61 (5) ◽  
pp. 502-517
Author(s):  
Mirahmad Amirshahi ◽  
Samira Jafari Dizicheh ◽  
Rick T Wilson

Companies frequently place out-of-home advertisements in locations hoping their brand becomes associated with that environment’s favorable attributes. However, prior research using U.S. subjects suggested that these associative benefits do not actually transfer onto the advertised brand. We faithfully replicate this earlier research using a non-Western sample and find that culturally based communication and cognitive processing models may explain the lack of results in the earlier study and affirmative results in our study. Three experimental conditions are used: single exposure, multiple exposures, and high involvement. We find that a billboard’s external environment does influence brand evaluations but only in the single-exposure condition. A possible explanation for why results were not evident in the multiple exposure and high involvement conditions may be related to the amount of message elaboration across study conditions.


1979 ◽  
Vol 42 (8) ◽  
pp. 624-630 ◽  
Author(s):  
M. E. STILES ◽  
L.-K. NG

A survey of 36 pairs of new (&lt; 10 days from manufacture) and old (pull date) samples of vacuum-packaged, sliced chopped ham were analyzed for total microbial load, specific pathogen count and pH. Results indicated a wide range of microbial loads, absence of pathogenic bacteria at the levels tested, and presumptive group D streptococci generally &lt; 100/g except for 22% of new samples and 44% of old samples, which had presumptive group D counts &gt; 100 but &lt; 106/g. The survey results also indicated marked differences in pH between products from different manufacturers. Product from two manufacturers was selected for inoculation studies. Chopped ham sandwiches were inoculated with a mixture of five enteropathogenic bacteria and held at 30, 21 and 4 C for up to 24 h. Bacillus cereus, Escherichia coli, Salmonella typhimurium and Staphylococcus aureus, but not Clostridium petfringens, grew in low competition product under the severely abusive holding temperature of 30 C in &lt; 24 h, at 21 C in &gt; 24 h. Product from one manufacturer inhibited the gram negative pathogens. Results indicated that chopped ham in sandwiches required almost unrealistic mishandling to develop a food poisoning potential by enterotoxigenic bacteria, but infective pathogens survived well.


2016 ◽  
Vol 79 (10) ◽  
pp. 1693-1699
Author(s):  
NELSON J. GAYDOS ◽  
CATHERINE N. CUTTER ◽  
JONATHAN A. CAMPBELL

ABSTRACT Preservation by pickling has been used for many years to extend the shelf life of various types of food products. By storing meat products in a brine solution containing an organic acid, salt, spices, as well as other preservatives, the pH of the product is reduced, thus increasing the safety and shelf life of the product. Pickling may involve the use of heated brines to further add to the safety of the food product. When precooked, ready-to-eat (RTE) sausages are pickled with a heated brine solution, the process is referred to as hot filling. However, hot filling has been shown to affect the clarity of the brine, making the product cloudy and unappealing to consumers. Because of the potential quality defects caused by higher temperatures associated with hot fill pickling, cold fill pickling, which uses room temperature brine, is preferred by some pickled sausage manufacturers. Because little information exists on the safety of cold fill, pickled sausages, a challenge study was designed using a brine solution (5% acetic acid and 5% salt at 25°C) to pickle precooked, RTE sausages inoculated with a pathogen cocktail consisting of Salmonella Typhimurium, Salmonella Senftenberg, Salmonella Montevideo, Listeria monocytogenes, and Staphylococcus aureus. All pathogens were reduced ~6.80 log CFU/g in 72 h when enumerated on nonselective media. On selective media, Salmonella and L. monocytogenes decreased 6.33 and 6.35 log CFU/g in 12 h, respectively whereas S. aureus was reduced 6.80 log CFU/g in 24 h. Sausages experienced significant (P ≤ 0.05) decreases in pH over the 28 days of storage, whereas no significant differences were observed in water activity (P =0.1291) or salt concentration of the sausages (P =0.1445) or brine (P =0.3180). The results of this experiment demonstrate that cold fill pickling can effectively reduce and inhibit bacterial pathogens.


Sign in / Sign up

Export Citation Format

Share Document