Effects of Drying Parameters on the Drying Kinetics of Fermented Ground Cassava Using a Rotary Dryer

Author(s):  
Ademiluyi Falilat Taiwo ◽  
M. F. N. Abowei ◽  
Y. T. Puyate ◽  
S. C. Achinewhu

The effects of drying parameters on the drying kinetics of fermented ground cassava were studied. Fermented ground cassava (TMS 30572) was dried in a bench scale rotary dryer at different inlet air temperature (115-230°C), inlet air velocity (0.83-1.55 m/s), feed drive speed (12-100 rpm), drum drive speed (8-18 rpm), relative humidity of inlet air (50 to 80 percent), and mass of feed (50-500 g). It is shown that inlet air temperature and inlet air velocity have the most significant effects on the drying rate of fermented ground cassava. A model which predicts the drying rate of fermented ground cassava as function of inlet air temperature and inlet air velocity is presented. Predictions of the model are compared with experimental data, and good agreement is obtained. For proper gelatinization of fermented cassava mash, the inlet air temperature should be within the range 140-230°C, low inlet air velocity (< 1.55 m/s), low drum drive speed (8-12 rpm), moderate air humidity (50 to 65 percent), and low feed drive speed of about 12 rpm. For high mass of feed (> 500 g), inlet air temperature in the range 190-230°C is recommended for proper gelatinization of fermented cassava.

2019 ◽  
Vol 805 ◽  
pp. 116-121
Author(s):  
Pathiwat Waramit ◽  
Apinunt Namkhat ◽  
Umphisak Teeboonma

This paper studied the influence of porous burner effect on drying kinetics of Nile tilapia drying using stainless steel mesh porous burner as heat source. Drying kinetics was analyzed by determination of drying rate (DR), drying specific energy consumption (SEC) and dryer thermal efficiency (). In this study, the stainless steel mesh was used as porous media with porosity of 10, 20 and 50 pore per inch (PPI), drying air velocity of 0.5, 1.0 and 1.5 m/s, and drying temperature of 50, 60 and 70 °C, respectively. The results were found that the application of porous burner as heat source can improve the drying kinetics. It was found, at the porosity of 50 PPI, the drying temperature of 70 °C and the air velocity of 1.5 m/s, the moisture ratio of the drying was decreased rapidly, the highest drying rate was found to be 150 g (water evap.)/hr., the lowest drying energy consumption was found to be146.75 MJ/kg, and the thermal efficiency of the dryer was found to increase by 17.79% and the CO and NOx concentration in case of applying porous burner as heat source is lower than without porous burner.


Author(s):  
Monica Premi ◽  
Harish Sharma ◽  
Ashutosh Upadhyay

Abstract The present study examines the effect of air velocity on drying kinetics of the drumstick leaves in a forced convective dryer. The drumstick leaves were dried in the temperature range of 50–800 C, at different air velocity (Dv) of 0.5 and 1.3 m/s. The results indicated that drying temperature and air velocity are the factors in controlling the drying rate. Experimental data obtained for the samples for color, drying rate and drying time proved that air velocity of 1.3 m/s yielded the product superior in terms of both quality and energy efficiency as compared to the samples at 0.5 m/s. Activation energy for drumstick leaves dried with air velocity, 0.5 and 1.3 m/s was 12.50 and 32.74 kJ/mol respectively. The activation energy relates similarly with the effective moisture diffusivity which also increased with increase in air velocity and temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
F. T. Ademiluyi ◽  
M. F. N. Abowei

A mathematical model was developed for predicting the drying kinetics of spherical particles in a rotary dryer. Drying experiments were carried out by drying fermented ground cassava particles in a bench scale rotary dryer at inlet air temperatures of 115–230°C, air velocities of 0.83 m/s–1.55 m/s, feed mass of 50–500 g, drum drive speed of 8 rpm, and feed drive speed of 100 rpm to validate the model. The data obtained from the experiments were used to calculate the experimental moisture ratio which compared well with the theoretical moisture ratio calculated from the newly developed Abowei-Ademiluyi model. The comparisons and correlations of the results indicate that validation and performance of the established model are rather reasonable.


Author(s):  
Nurhasmanina Norhadi ◽  
Ammar Mohd Akhir ◽  
Nor Roslina Rosli ◽  
Farid Mulana

Drying is generally used to increase the shelf life of food products. In this context, mango fruit is used as a sample for the drying process because of its high commercial value and particularly high moisture content. The mango was sliced into few batches of sample with a size of 20 mm × 30 mm × 5 mm each. The experiments were conducted using tray and oven dryer at different temperatures of 40, 50 and 60 °C with a steady airflow rate of 1.3 m/s. The objectives are to study the effect of drying time, temperature and air velocity towards drying of mango fruit, to compare the physical characteristics of mango sample after drying and to determine the best drying kinetics model fitted to each tray and oven dryer. The results showed that the increase in drying time, temperature and air velocity would reduce the moisture content while at the same time, drying rate increased significantly. Tray dryer was found to be more effective than oven dryer because of higher drying rate with better product quality and appearance at the end. Furthermore, the gathered data were fitted into few widely used drying mathematical models and it was found that Henderson and Pabis model at 60°C is best suited for tray dryer whereas Page model at 40 °C is the best for oven dryer.


Author(s):  
Olajide Sobukola

The effects of air temperature (50, 60 and 70°C), sample thickness (2, 4 and 6mm) and pretreatment conditions (hot water blanching, 1 and 3% sodium metabisulphite solutions) on the drying characteristics and kinetics of okra were investigated using a convective hot air dryer at a flow rate of 1.5m/s. It was observed that pretreatment conditions, sample thickness and drying air temperature significantly (P<0.05) affected drying rate. Drying rate increases as temperature of drying air increases from 50 to 70°C. The drying curve for all experiments occurred in the falling rate period with no constant rate period. Three thin layer drying models (Page, modified Page I and Wang and Singh) were evaluated using coefficient of determination (R2), root mean square error (RMSE) and the reduced chi square (?2). The three models can appropriately describe the drying kinetics of okra slices considering the different experimental conditions. The effective diffusivity was determined using the Fick’s model and was observed to vary between 1.125x10-8 – 9.93x10-9m2/s and 1.165x10-8 – 7.131x10-9 m2/s for treated and untreated samples. The Arrhenius-type relationship describes the temperature dependence of diffusivity coefficient and was determined to be 16.749kJ/mol and 22.437kJ/mol for treated and untreated samples respectively.


2015 ◽  
Vol 365 ◽  
pp. 77-81 ◽  
Author(s):  
J.V. Silva ◽  
E.M.A. Pereira ◽  
T.H.F. Andrade ◽  
Antônio Gilson Barbosa de Lima

This paper aims to present an experimental study of rough rice (BRSMG CONAI cultivar) drying by using a stationary method. The grain was dried in an oven with air mechanical movement under controlled conditions of velocity, temperature and relative humidity. In order to obtain balanced moisture content, the samples studied were kept at 40 and 70°C. Results of the drying and heating kinetics of the grain during the process are shown and analyzed. It was found that higher drying rate and lower time for drying as higher air temperature (70°C) is used. It can be concluded that the reduction of the moisture content of the grain, is considered very complex and, depending on the method and drying conditions, can substantially provokes breaking and cracks, which reduces final product quality.


2011 ◽  
Vol 35 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Soraia Vilela Borges ◽  
Maurício C. Mancini ◽  
Jefferson Luiz Gomes Corrêa ◽  
Julia Benedito Leite

The influence of variables as temperature, solid shape, temperature, branching and cultivar on drying of bananas were studied. Bananas from cv. Prata and D'água, on disk and cylindrical shape, blanched or not, were dehydrated in a tray dryer in natural convection at 40 and 70ºC. Drying behavior was analyzed by using a mathematical model. The exponential model showed good agreement to experimental data (r² 0.93 - 0.99 and standard error: 0.01- 0.05). Temperature presented positive influence on drying rate in all the tested conditions. With respect to the sample shape, the disk shape carried out to significantly higher drying rates only for D'água cultivar without blanching. Blanching was significantly influent, with positive influence, on drying rate of banana cv. Prata at 40º C. The influence of the cultivar did not present a defined tendency.


2006 ◽  
Vol 258-260 ◽  
pp. 563-574 ◽  
Author(s):  
J.V. García-Pérez ◽  
Carmen Rosselló ◽  
J.A. Cárcel ◽  
Susana De la Fuente ◽  
A. Mulet

Drying kinetics of carrot cubes were carried out at 1 m/s air velocity at different air drying temperatures (30, 40, 50, 60 and 70±0.1 °C) (AIR experiments), and also at the same experimental conditions but applying high power ultrasound (US experiments). Two kind of diffusion models were used to simulate the drying kinetics, according to external resistance to mass transfer being considered (ER model) or neglected (NER model) for solving the diffusion equation. Diffusion ER model was solved using a finite difference method. Drying rate increased as air temperature was higher. Ultrasound also increased drying rate at the different temperatures, but the improvement on drying rate decreased at high temperatures, and almost disappeared at 70 °C. Effective moisture diffusivities only showed an Arrhenius type relationship with temperature for AIR experiments. The NER diffusion model was not accurate to simulate the drying kinetics at any experimental conditions tested. However, diffusion ER model provided a high closeness between experimental and calculated drying data (VAR>99.80). Through the parameters identified of the ER diffusion model, effective moisture diffusivity and mass transfer coefficient, the influence of the power ultrasound application on internal and external resistance to mass transfer was shown to be significant (p<0.05).


2016 ◽  
Vol 12 (6) ◽  
pp. 599-606 ◽  
Author(s):  
Flávia Daiana Montanuci ◽  
Raphaela Mulato Cavalcante ◽  
Camila Augusto Perussello ◽  
Luiz Mario de Matos Jorge

Abstract The study of process kinetics may aid the design and optimization of drying systems. This paper evaluated the influence of drying temperature (40, 60 and 80 °C) on the moisture content, drying rate, density, shrinkage and breakage of maize dried in two different dryers: oven and silo dryer. In both dryers, the temperature increase reduced drying time, final moisture content and shrinkage of the grains, however increased breakage. Drying rate was higher in the oven (6.4×10−4±2.3×10−4s−1 versus 5.4×10−4±1.2×10−4s−1), while shrinkage (15.2±4.7 % versus 24.4±5.6 %) and density increase (16.6±5.9 % versus 33.4±5.8 %) were more intense in the silo. There was a large release of husk in the silo dryer and the moisture content was slightly smaller in the lower layers respective to the upper ones.


Sign in / Sign up

Export Citation Format

Share Document