scholarly journals PREDICTION OF LANDSLIDE DAM FORMATION AFFECTED BY TOPOGRAPHICAL AND GEOLOGICAL CONDITIONS

Author(s):  
Norio HARADA ◽  
Ken’ichirou KOSUGI ◽  
Yoshifumi SATOFUKA ◽  
Takahisa MIZUYAMA
2021 ◽  
Vol 4 (3) ◽  
pp. 52-61
Author(s):  
Dmytro Kasiyanchuk ◽  
Liudmyla Shtohryn

The dynamism of the landslides within the Carpathian region of Ukraine is because of the difficult engineering and geological conditions. High landslide den sity and significant population density contribute to the fact that environmental parameters worsen and require rational management. Permanent natural factors like clay flysch formation, fault tectonics, high seismic activity, and dense network of rivers mostly facilitate the active development of landslides in the Carpathian region. However, it is triggered by extreme long-term precipitation. The numerical parameters of population density, the landslide damage coefficient, and the predictive range of landslide intensification were selected to assess the ecological risk of damages in the area. The landslide dam age coefficient characterizes the tendency of the area to landslide development, considering all the factors contributing to the landslides. Risk, as a multifunctional calculated complex, includes the calculation of damage, according to which we can assess the possibility of risk for the human being while assuming the equal distribution of the population within the study area. The integral components of the risk are calculated based on the data gathered to assess the growth of risks in the future, considering the area distribution and predictive time series of the landslide intensification. This analysis has identified engineering and geological areas having the greatest risk to human life.


2011 ◽  
Vol 243-249 ◽  
pp. 3189-3200 ◽  
Author(s):  
Yan Hui Song

The Sky Pond landslide dam is located in Muchang valley, a branch of the Yellow River branches. From this point it is about 6Km to the mouth of the valley from where the Yellow River flows 0.8Km downwards to the planned Jishi gorge hydropower station. The Sky Pond landslide dam is actually formed by two landslides from both the left and right bank slopes and completely blocks the seasonal river channel. The volume of the landslide dam is about 14 millions m3 with 2.37 millions m3 water stored in the dammed lake under the condition of perennial mean water level. Because (1) the dam body is large in width and thickness; (2) the dammed lake water is small both in volume and weight compared to the landslide dam; (3) recharge to the dammed lake is basically the same as the discharge every year; and (4) there is a natural spillway in the dam body, the landslide dam is present at least 750 years after its formation. Although landslide dams which have existed for several hundreds to thousands of years are generally considered as stable, there are remains which may fail catastrophically. In order to analyze the stability of the Sky Pond landslide dam and provide justification for the future engineering decisions, this paper describes the engineering geological conditions near the landslide dam and the characteristics of the dam body, and a detailed discussion of the formation mechanism of the landslide. Based on engineering geology investigation, a qualitative assessment of the stability of the dam and an analysis of the probability of dam overtopping and piping is carried out. Limit equilibrium analysis has been used to calculate the stability of the dam slope under various operational conditions. Results of the stability analyses indicate that the Sky Pond landslide dam should remain stable and does not present a potential theat to the planned hydropower station.


On the basis of engineering and design surveys of the building, engineering-geological and geophysical studies of the soils of the territory conducted by the article authors, as well as with due regard for the results of studies conducted on this territory by other authors, the features of the foundations, soils of their foundation and engineering-geological conditions of the territory of the Melnikov House are established. It is shown that the Melnikov house is located under complex engineering-geological conditions on the territory of high geological risk, in the zone of influence of tectonic disturbance. To the North of the area there is a zone of intersection of the observed disturbance with a larger disturbance that can have an impact on geological processes. To the North-East of the site of the Melnikov House, a sharp immersion of the roof of carbon deposits was revealed. It promotes groundwater seepage into limestone of the carbonate strata from overlying water-bearing sands and activation of processes of suffusion removal and sinkhole phenomena of the soil. The surveyed area is assessed as potentially karst-hazardous and adjacent to it from the North-East territory as karst-dangerous. In this regard any construction on the adjacent territory can provoke activation of sinkhole phenomena on the surface. The foundations of the building are basically in working condition. Existing defects can be eliminated during repair. The foundation soils mainly have sufficient bearing capacity. Areas of the base with bulk soil can be reinforced. However, when developing a project for the reconstruction of the building and its territory, it should be taken into account that the design of the Melnikov House does not provide for its operation on the loads at the formation of sinkholes.


2019 ◽  
Vol 6 (4) ◽  
pp. 60-65
Author(s):  
Elena Vyacheslavovna Zaytseva

The problem statement (relevance). The article illustrates the outcome of analytical research in the area of substantiation of organizational and managerial structures of cement companies on the basis of conducting an integral estimation of complex conditions of operation (manufacturability of mining and geological conditions of cement production, level of production and technical conditions and social conditions) and outputs (production and technical level and financial level). Integrated assessment is provided by the appropriate methodology, the purpose of which supports an increase in the objectivity, reliability and reliability of decisions in the development of technological systems of cement enterprises.Purpose: development of an enlarged flowchart of the decision-making procedure algorithm for development strategies for cement enterprises. Methods used: the work used the method of “vector norm”, based on the methodological principles of the theory of complex decision making, utility theory, game theory, qualimetry, expert survey method and other generally accepted methods and principles.Novelty. The elements of novelty include an improved method of integrated assessment of the technological structure of cement enterprises in the conditions of external and internal environments of operation.Result. The article presents an iterative algorithm and decision-making procedure for structurally selected groups of cement enterprises with the choice of a specific form of their development. The results of the work made it possible to form the key areas of training and a list of information technologies that ensure technological readiness for the implementation of the directions of digitalization in relation to cement enterprises.Practical significance: the organizational and management apparatus with the appropriate mathematical reinforcement for the selection and justification of strategies for the development of cement enterprises. The practical implication of the outcome of the study due to the possibility to increase the effectiveness of organizational-technological and managerial solutions based on the developed methodology, technique and algorithm of formation of innovative strategy of development of the mining enterprises of the cement industry. The main provisions of the work are used in the holding “EUROCEMENT” in the development and implementation of plans for the development of industrial production in the short and long term.


Author(s):  
Miroslav Radoň ◽  
Dalibor Velebil

Ludwig Mayer (*1879, †?) was an significant collector of minerals from Bílina near Teplice. He personally searched minerals in terrain. He also purchased large amount of minerals from dealers or exchanged with other collectors. He deserved a number of interesting or completely new mineralogical findings, which were enriching the overall knowledge of mineralogical conditions of the Bohemian Central Highlands. Many of his findings were published by profesor Josef Emanuel Hibsch (*1852, †1940), the greatest expert on geological conditions of the Bohemian Central Highlands. From 1939 to 1945 Mayer was the manager of geological collections of the museum in Teplice. A total of 596 pieces of minerals from the Mayer’s collection came to the systematic part of the mineralogical collection of the National Museum in Prague. The core of this amount consists of documentary valuable minerals from several important mineralogical sites of the Central Bohemian Highlands, such as Dolní Zálezly, Církvice, Mariánská Rock in Ústí nad Labem, Radejčín and new site Chudoslavice with yellow crystals of chabazite, discovered by Mayer. A total of 54 samples of minerals from the Mayer collection were selected for the newly prepared permanent exhibition of minerals of the National Museum in Prague.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


Sign in / Sign up

Export Citation Format

Share Document