scholarly journals SYNTHESIS AND CHARATERISATION OF RICE HUSK SILICA BASED BOROSILICATE (B2SiO5) CERAMIC BY SOL-GEL ROUTES

2011 ◽  
Vol 11 (1) ◽  
pp. 85-89 ◽  
Author(s):  
Simon Sembiring

In this research, borosilicate ceramics were produced from rice husk silica. Preparation of borosilicate ceramics was conducted by mixing boron oxide sol from borax with silica sol extracted from rice husk. The boron oxide was produced by hydrolysis of borax using H2SO4 5%. The samples were synthesized with different compositions, with the ratios of silica to boron oxide are 8:1, 8:2, 8:3 and 8:4. The samples were sintered at 900 °C. Functional groups were examined using FTIR spectroscopic technique. Structural and microstructural characteristics were examined by XRD and SEM, respectively. The chemical resistance of borosilicate is evaluated by gravimetric method using H2SO4, HCl, NaOH and KOH. The FTIR study revealed that the main functional groups are Si-O-Si, B-O-B, and B-O-Si. The x-ray diffraction (XRD) study revealed that the main crystalline phases are borosilicate (B2SiO5) and boron oxide (B2O3). SEM investigations clearly demonstrated that the smaller particle size was found with increasing in boron oxide concentration. From the chemical resistance test carried out, it was obtained that the produced borosilicate possessed high resistance to acids and alkalis.

1995 ◽  
Vol 398 ◽  
Author(s):  
C. Barrera-Solano ◽  
M. PiÑero ◽  
C. Jiménez-Solís ◽  
L. Gago-Duport

ABSTRACTYSZ samples containing 5 and 10 mol% of Y203 were prepared by controlled hydrolysis of metal alkoxides. The dried powders were calcined at 800°C and then they were uniaxially pressed and sintered at different temperatures and next heated at 1400°C (∼ 5 MPa) or annealed at 1600°C for 24 h. The quantitative analysis of the experimental X-ray diffraction (XRD) spectra was performed by Whole Pattern Fitting (WPF). A Pseudo-Voigt (Thompson-Cox-Hastings) was used as shape profile function. The respective phase fractions (wt %) were fitted for both solid state solutions using the scale factor. The heat treatment induced changes are discussed.


2015 ◽  
Vol 15 (1) ◽  
pp. 36-42 ◽  
Author(s):  
Posman Manurung ◽  
Rudy Situmeang ◽  
Ediman Ginting ◽  
Indra Pardede

This article describes the synthesis of titania-silica composites by a sol-gel method using a mixture of silica of rice husk and titanium butoxide sols. Microstructures were examined at calcination temperature in the range of 500 to 700 °C, with temperatures interval of 50 °C. The sintered catalysts were subsequently tested for photodegradation of methylene blue (MB) under ultraviolet and sunlight rays. Physical characteristics were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET). The XRD results did not show the presence of silica crystal phase in each sample. The results showed that the highest BET surface area of samples was obtained at the temperature of 650 °C. In sample calcined 500 °C, the activity of the catalyst on MB was relatively similar in both sunlight and ultraviolet rays.


Author(s):  
A.R. Hidayu ◽  
N.F. Mohammad ◽  
S.I.S. Jamaludin ◽  
N.F.M.K. Teo ◽  
N.S.M. Sah ◽  
...  

Abstract: Rice husk has attracted considerable attention in the recent years due to its chemical component that are beneficial to a wide range of application. . In this paper, silica aerogel from rice husk ash (RHA) was prepared through sol-gel processing and ambient pressure drying. The silica RHA was extracted with sodium hydroxide solution to produce sodium silicate solution and neutralized with sulphuric acid to form silica gel. Then, the silica aerogel was further modified with amine, which is 3-(aminopropyl) triethoxysilane (APTES) because amine groups provide specific adsorption sides for CO2 adsorption. The functional group, surface morphology and elemental composition of rice husk, silica aerogel and modified silica aerogel were characterized by Fourier transform infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and Elemental analyser (EA). For amine modified silica aerogel, it was found that the sample consists of N-H band at a certain peak. FTIR and SEM analysis revealed the synthesized silica aerogel has fibrous morphology and indicates similar trend with previous researches. The amine modified silica aerogel (AMSA) is able to adsorb 0.88 mol CO2/kg AMSA. This study shows that the rice husk silica aerogel modified with APTES could enhance the CO2 adsorption performance due to the physisorption and chemisorption


2011 ◽  
Vol 233-235 ◽  
pp. 1188-1191
Author(s):  
Hong Cai ◽  
Yan Chen ◽  
Yun Ying Wu

Nano-TiO2 particles were prepared by sol-gel method, of which the surfaces were coated by SiO2. The coating was achieved by the hydrolysis of sodium silicate (Na2SiO3) in ammonium chloride (NH4Cl). The surface bonding, phase constitution and chemical components of the samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of the SiO2 coating process onto TiO2 surface was analyzed. Results show that SiO2 particles were immobilized on the TiO2 surface via Ti—O—Si bondings, which formed at the interface. The SiO2 layer on TiO2 surface was amorphous, the photocatalytic performance was decreased of the TiO2 while its stability was enhanced after surface modification.


2020 ◽  
Vol 8 (1) ◽  
pp. 72-78
Author(s):  
Dwi Rasy Mujiyanti ◽  
Hayatun Nisa ◽  
Kholifatu Rosyidah ◽  
Dahlena Ariyani ◽  
Abdullah Abdullah

Tetraethyl Ortosylicate (TEOS) is a material is widely used in industrial fields. One source of silica (SiO2) is rice husk ash. In this study was determined the effect of reaction time on viscosity and density in making TEOS from silica rice husk. Silica resulting from the purification of rice husk ash is used in the TEOS manufacturing process by examining the variation of reaction time. One mole of ethanol and 0.25 mole of silica powder were added into 250 ml of round bottom flask followed by the addition of 1 gram of CuO/Al2O3 catalyst then the mixture was refluxed for 30, 35, 40, 45 and 50 hours with sufficient stirring and a temperature of 90 °C. The FTIR characterization results show that there are three main functional groups, namely the -OH, Si-O and C-O groups in the five TEOS synthesis results. Wavenumbers of the –OH functional groups obtained ranged from 3349 cm-1 - 3315 cm-1; Si-O functional groups range from 813 cm-1 - 606 cm-1 and C-O functional groups range from 1105 cm-1 - 1040 cm-1. Reaction time has no significant effect on viscosity. Reaction time has no significant effect on the density and density of the resulting TEOS.


2011 ◽  
Vol 11 (3) ◽  
pp. 279-284 ◽  
Author(s):  
Suyanta Suyanta ◽  
Agus Kuncaka

The research about synthesis and characterization of MCM-41 from rice husk has been done. Silica (SiO2) was extracted from rice husk by refluxing with 3M hydrochloric solution at 80 °C for 3 h. The acid-leached rice husk was filtered, washed, dried and calcined at 650 °C for 6 h lead the rough powder of rice husk silica with light brown in color. Characterization was carried out by X-ray diffraction (XRD) and FTIR spectroscopy method. Rice husk silica was dissolved into the sodium hydroxide solution leading to the solution of sodium silicate, and used as silica source for the synthesis of MCM-41. MCM-41 was synthesized by hydrothermal process to the mixture prepared from 29 g of distilled water, 8.67 g of cetyltrimethyl ammonium bromide (CTMAB), 9.31 g of sodium silicate solution, and amount mL of 1 M H2SO4. Hydrothermal process was carried out at 100 °C in a teflon-lined stainless steel autoclave heated in the oven for 36 h. The solid phase was filtered, then washed with deionised water, and dried in the oven at 100 °C for 2 h. The surfactant CTMAB was removed by calcination at 550 °C for 10 h with heating rate 2 °C/min. The as-synthesized and calcined crystals were characterized by using FTIR spectroscopy, X-ray diffraction and N2 physisorption methods. In order to investigate the effect of silica source, the same procedure was carried out by using pure sodium silicate as silica source. It was concluded that silica extracted from rice husk can be used as raw materials in the synthesis of MCM-41, there is no significant difference in crystallinity and pore properties when was compared to material produced from commercial sodium silicate.


2019 ◽  
Vol 1 (1) ◽  
pp. 61-66
Author(s):  
Simon Sembiring

In this research, asphalt composite was produced by combining asphalt and rice husk silica. The ratio of asphalt and silica were 1:1.5; 1:1.7; and 1:1.9 respectively and calcined at temperature of 150 oC. Functional group characteristics of asphalt composites were examined by FTIR and XRD. The FTIR and XRD studies revealed that the main Functional groups are Si-O-Si, C-H, and structure amorph of silica.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Martin O. Onani ◽  
Paul Mushonga ◽  
Lehlohonolo F. Koao ◽  
Francis B. Dejene

A series of SiO2 nanostructures codoped with Eu3+; Mg2+ ions were obtained by a sol-gel method. The gels synthesized by the hydrolysis of Si(OC2H5)4, Eu(NO3)3·6H2O, and Mg(NO3)2 were heated in air at 600°C for 2 hours. Firstly, the total amount of Eu3+ ions was varied from 0 to 2.0 mol% to investigate the effect of self-damping, while in the second case, the Eu3+ ions were kept constant in the experiment at 0.5 mol% total doping and Mg2+ ions varied. The samples were characterized by X-ray diffraction, TEM, EDS, and UV lamp-excited luminescence spectroscopy. The Eu3+ ions were homogeneously dispersed in the silica and interacting with the small (1–5 nm) amorphous silica matrix. Strong red emissions located at 614 nm and 590 nm for doped and codoped SiO2 were observed from the UV light excitation at room temperature. The composition of around 1.25 mol% Eu3+ gave highest emission intensity. SiO2; Mg2+ ions portray strongly enhanced emissions due to energy transfer from Mg2+ to Eu3+, which is due to radiative recombination. An increase in luminescence intensity was observed as the Mg2+-to-Eu3+ ratio increased for the range investigated. The results show Eu3+ ion is located inside or at the surface of disordered SiO2 nanoparticles.


1990 ◽  
Vol 180 ◽  
Author(s):  
J.R. Bartlett ◽  
J.L. Woolfrey

ABSTRACTSol-gel methods have been applied to the production of the multicomponent ceramic, Synroc B. These techniques involved the hydrolysis of a mixture of Ti and Zr, alkoxides peptising to form a sol and subsequent sorption of Al3+, Ba2+ and Ca2+ cations under acidic conditions. Powder properties were examined by a variety of techniques, including electron microscopy, x-ray diffraction, N2 sorption, and differential thermal analysis. The effects of processing conditions on the physical properties of the powders are discussed.


Sign in / Sign up

Export Citation Format

Share Document