scholarly journals Sorption Mechanism and Performance of Peat Soil Humin for Methylene Blue and p-Nitrophenol

2019 ◽  
Vol 19 (1) ◽  
pp. 198
Author(s):  
Sri Juari Santosa ◽  
Eko Sri Kunarti ◽  
Nurul Hidayat Aprilita ◽  
Beti Wulandari ◽  
Dhian Nuri Bawani

The responsible mechanism and performance of peat soil humin for the sorption of methylene blue (MB) and p-nitrophenol (p-NP) have been investigated. Humin was obtained from peat soil of Siantan, West Kalimantan, Indonesia, after removing the content of humic and fulvic acids into a NaOH solution using the recommended procedure of International Humic Substances Society (IHSS). The obtained humin was then purified by rigorous stirring in a mixed solution of HCl 0.1 M and HF 0.3 M. Ash content in humin after the purification abruptly decreased from 36.84 to 1.26 wt.% indicating that minerals and other inorganic impurities were mostly removed. Phenolic –OH and carboxyl (–COOH) functional groups contributing to the acidity of humin were in the level of 3.44 and 2.10 mmol/g, respectively. At optimum medium pH of 6.20 for MB and 7.00 for p-NP, –COO– as the deprotonated product of –COOH was the most responsible active site in sorbing MB and p-NP through electrostatic interaction and hydrogen bonding, respectively. The homogeneity of –COO– as the active site for the sorption of MB and p-NP implied that the surface of humin sorbent was energetically uniform and thereby the sorption of both MB and p-NP followed better the Langmuir than the Freundlich isotherm model with sorption capacity of 0.19 and 0.26 mmol/g and sorption energy of 32.92 and 27.27 kJ/mol, respectively.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 850 ◽  
Author(s):  
Ladislav Svoboda ◽  
Nadia Licciardello ◽  
Richard Dvorský ◽  
Jiří Bednář ◽  
Jiří Henych ◽  
...  

In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.


Author(s):  
Chang-Mao Hung ◽  
Chiu-Wen Chen ◽  
Yu-Zhe Jhuang ◽  
Cheng-Di Dong

AbstractIn this study, the oxidation of methylene blue (MB) over iron oxide magnetic nanoparticles (Fe


2003 ◽  
Vol 21 (5) ◽  
pp. 451-462 ◽  
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Leena Abu-Aitah

An improvement in the adsorption capacity of naturally available bentonite towards water pollutants such as Methylene Blue dye (MBD) is certainly needed. For this purpose, sodium bentonite was activated by two methods: (1) treatment with sodium dodecyl sulphate (SDS) as an ionic surfactant and (2) thermal treatment in an oven operated at 850°C. Batch adsorption tests were carried out on removing MBD from aqueous solution using the above-mentioned bentonites. It was found that the effectiveness of bentonites towards MBD removal was in the following order: thermal-bentonite > SDS-bentonite > natural bentonite. X-Ray diffraction analysis showed that an increase in the microscopic bentonite platelets on treatment with SDS was the reason behind the higher uptake of MBD. An increase in sorbent concentration or initial pH value of the solutions resulted in a greater removal of MBD from the solution. An increase in temperature led to an increase in MBD uptake by the bentonites studied in this work. The Freundlich isotherm model was employed and found to represent the experimental data well.


2017 ◽  
Vol 2 (2) ◽  
pp. 90 ◽  
Author(s):  
Yulius Dala Ngapa

<p>Activation is one of the processes by which are mostly done to improve the quality of natural zeolite. Activation process by zeolite will change the ratio of the Si/Al and can increase the formation of empty cavities so that the capability of zeolite as an adsorbent be optimal. In this research, natural zeolite from the district of Ende, Nusa Tenggara Timur. Activation Ende natural zeolite done chemically using HCl and NaOH solution, with variations concentrate 0,5 M; 1,5 M; and 3,0 M. Next, zeolite which has activated used to adsorb dye methylene blue. Based on the research results, chemically of activation from natural zeolite can increase the adsorption capacity to substance methylene blue. The adsorption capacity in the Ende natural and after activation is 17,289 mg/g and 19,98 mg/g respectively. The Langmuir model most closely matched the isothermal adsorption of equilibrium process.</p>


2017 ◽  
Vol 17 (1) ◽  
pp. 95 ◽  
Author(s):  
Sri Sudiono ◽  
Mustika Yuniarti ◽  
Dwi Siswanta ◽  
Eko Sri Kunarti ◽  
Triyono Triyono ◽  
...  

Humic acid (HA) extracted from peat soil according to the recommended procedure of the International Humic Substances Society (IHSS) has been tested to remove AuCl4- from aqueous solution. The removal was optimum at pH 2.0 and it was mainly dictated by attachment through hydrogen bonding to unionized carboxyl (–COOH) groups and reduction by the action of the hydroxyl (–OH) groups to gold (Au) metal. The removal of AuCl4- improved after HA was purified through repeated immersion and shaking in a mixed solution containing 0.1 M HCl and 0.3 M HF. When the purification led to the sharp decrease in ash content from 39.34 to 0.85% (w/w) and significant increase in both the –COOH and –OH contents from 3240 to 3487 mmol/kg and from 4260 to 4620 mmol/kg, respectively; the removal of AuCl4- improved from 0.105 to 0.133 mmol/g. This improvement of AuCl4- removal by the purified HA was accompanied by higher ability in reduction to Au metal. The attached AuCl4- on –COOH groups of both crude and purified HAs was qualitatively observed by the characterization result of FT-IR spectroscopy, while the presence of Au metal on the surface of those HAs was verified by the characterization result of XRD.


2021 ◽  
Vol 21 (7) ◽  
pp. 3882-3886
Author(s):  
Yong-Wook Jung ◽  
Jong Kyu Kim

In this study, nano-sized low cost titanium dioxide (TFS) was prepared using sludge from sewage treatment and performance was verified. To remove air pollutants, the photocatalytic degradation of methylene blue and efflorescence characteristics is assessed according to the mixing ratio of the nano-sized TFS by applying them to concrete sidewalk blocks. The photocatalytic degradation performance of concrete sidewalk blocks shows that the methylene blue removal rate of specimens containing 2.5%, 5%, and 10% of nano-sized TFS is 29%, 27%, and 38%, respectively. When the nano-sized TFS is mingled on the surface of the sidewalk block, the performance of anti-corrosion and antifouling showed excellency mainly due to the moisture blocking derived by the antifouling function of photocatalysts.


2020 ◽  
Author(s):  
Edu J. Inam ◽  
John Bassey Edet ◽  
Patrick E. Akpan ◽  
Kufre E. Ite

Abstract The surface characteristics as well as adsorption potential of activated cow bone char for the removal of methylene blue (MB) from aqueous solution were investigated. Physical characteristics of the adsorbent revealed a large surface area, low pore volume, reduced ash and moisture contents, which have been identified as good adsorption characteristics. The surface of the adsorbent was predominated by mesopores with a few microporous structures as well as the presence of carbonates, phosphates, silicates and hydroxyl groups which are characteristic of the apatite phase. Adsorption efficiency for the removal of MB was observed to be influenced by pH, adsorbent dosage as well as initial dye concentrations. Equilibrium adsorption data was best described by the Freundlich isotherm with a good correlation coefficient suggesting multilayer adsorption of the dye molecules on the surface of the adsorbent. Based on the drive for reduced cost, removal efficiency and availability, activated carbon from cow bone could be a promising adsorbent for methylene blue-laden effluent that could be utilized in small and large industrial applications.


2020 ◽  
Vol 32 (10) ◽  
pp. 2624-2632
Author(s):  
C.S. Nkutha ◽  
N.D. Shooto ◽  
E.B. Naidoo

This work reports the feasibility of using pristine and chemically modified coral limestones by acid and base. Their potential adsorptive capabilities is probed by treatment of toxic Cr(VI), Pb(II) ions and methylene blue in aqueous solution under different experimental parameters by batch method. Parameters such as agitation time, concentration, temperature and pH were varied to understand the sorption behaviour of the adsorbents in each case. The adsorbents were characterized by SEM, XRD and FTIR. Morphological analysis by SEM micrographs show that the surface of all adsorbents was irregular in nature. XRD spectra confirmed the orthorhombic structure of aragonite in the pristine coral limestones (PCL), acid modified coral limestones (ACL) and base modified coral limestones (BCL). FTIR results affirmed the presence of (CO3 2-) and (-C=O) groups of the carbonate ions and Ca-O attachment to the surface of PCL and removal of CaCO3 characteristic peaks in ACL and BCL. However, in the modified adsorbents shifting of Ca-O peaks occurred. The recorded maximum adsorption capacities of PCL, ACL and BCL for Cr(VI) ions were 69.42, 65.04, 64.88 mg/g, Pb(II) ions 39.36, 74.11, 78.34 mg/g and methylene blue 37.24, 46.28, 46.39 mg/g, respectively. The uptake of Pb(II), Cr(VI) ions, methylene blue onto PCL fitted Freundlich model. Also the uptake of Cr(VI) ions and methylene blue onto ACL and BCL fitted Freundlich isotherm. However, uptake of Pb(II) ions onto both ACL and BCL fitted Langmuir isotherm. The data revealed that the adsorption of Pb(II) ions onto PCL and ACL and methylene blue dye onto PCL was exothermic. Whilst the adsorption of Cr(VI) ions onto PCL, ACL and BCL and methylene blue dye onto ACL and BCL were endothermic in nature, hence increasing the temperature would enhance the uptake of Pb(II) ions onto BCL, Cr(VI) ions onto ACL and BCL and methylene blue onto ACL and BCL. The obtained (ΔGº) values at all studied temperatures for the adsorption of Pb(II), Cr(VI) ions and methylene blue onto PLC, ACL and BCL indicated a spontaneous process.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Oksana Nadtoka ◽  
Pavlo Virych ◽  
Serhiy Nadtoka ◽  
Nataliya Kutsevol

Development and characterization of hybrid hydrogels loaded with methylene blue, which are designed to apply for photodynamic therapy, are presented. Hybrid hydrogels were synthesized by grafting polyacrylamide onto dextran/dextran sulfate sodium salt using N, N′-methylene-bis-acrylamide as a cross-linker. The differences in microstructure of synthesized hydrogels were proved by scanning electron microscopy. FTIR spectra testify that the chemical nature of hydrogel components affects the hydrogel hydrophilicity. The swelling properties of hydrogels in water and absorption/desorption hydrogels’ ability towards methylene blue were studied. It was shown that dye sorption was dependent on the hydrogel type. The hydrogel based on dextran and polyacrylamide revealed the highest ability to release absorbed dye. The bactericidal effect of this hydrogel loaded with methylene blue and activated by red light in suspension and solid medium of S. aureus was tested. The increase of bactericidal activity of hybrid hydrogel was dependent on radiation doses.


Sign in / Sign up

Export Citation Format

Share Document