scholarly journals Optimalization of Temperature to Control Araecerus fasciculatus de Geer (Coleoptera: Anthribidae) on Nutmeg

2018 ◽  
Vol 22 (1) ◽  
pp. 33 ◽  
Author(s):  
Dwi Rachmanto ◽  
Fransiscus Xaverius Wagiman ◽  
Siwi Indarti

The exported nutmeg of Indonesia is frequently affected by the coffee bean weevil, Araecerus fasciculatus de Geer (Coleoptera: Anthribidae), so that it should be fumigated prior to export. CH3Br is an effective fumigant as quarantine measure for export products for 24 h, but this fumigant has been prohibited. Therefore, air temperature treatment is one of the alternative strategies. This research was aimed to determine the optimum air temperature in controlling A. fasciculatus on nutmeg. Healthy nutmeg, infected and A. fasciculatus-containing nutmeg, as well as individual adults of A. fasciculatus were treated with air temperature of 30−70°C for 1−24 h. The optimum air temperature was the lowest temperature which could kill 100% of examined insects. The results showed that 100% mortality of A. fasciculatus adults outside nutmeg occurred at air temperature of 45°C for 12 h or 50°C for 6 h. Meanwhile, 100% mortality of life stadium of A. fasciculatus inside nutmeg happened at air temperature of 55°C for 24 h. The raising of air temperature at 30−50°C for 24 h decreased the water content of nutmeg from 5.59±0.25 to 3.79±0.24%. The increment of temperature from 50 to 55°C for 24 h reduced the weight of nutmeg from 5.20±0.72 to 5.04±0.70 g. Air temperature treatment at 45−50°C for 12−24 h could eliminate adults of A. fasciculatus on exported nutmeg and air temperature of 55°C for 24 h could remove all life stadia of A. fasciculatus within nutmeg. IntisariBiji pala ekspor Indonesia sering diserang oleh kumbang bubuk biji kopi, Araecerus fasciculatus de Geer (Coleoptera: Anthribidae), sehingga harus difumigasi sebelum diekspor. Tindakan karantina pada produk ekspor yang sering menggunakan CH3Br efektif selama 24 jam, namun fumigan ini sudah dilarang. Oleh karena itu, perlakuan suhu udara merupakan salah satu alternatifnya. Penelitian ini bertujuan untuk menentukan suhu udara optimal untuk mengendalikan A. fasciculatus pada biji pala. Biji pala yang sehat, biji pala yang terserang dan berisi serangga A. fasciculatus serta imago A. fasciculatus diperlakukan dengan suhu udara 30−70°C selama 1−24 jam. Suhu udara optimal yaitu suhu terendah yang dapat membunuh 100% serangga uji. Hasil penelitian menunjukkan bahwa 100% mortalitas imago A. fasciculatus di luar biji pala terjadi pada suhu udara 45°C selama 12 jam atau 50°C selama 6 jam. Sementara itu, mortalitas 100% stadia hidup A. fasciculatus di dalam biji pala terjadi pada suhu udara 55°C selama 24 jam. Kenaikan suhu udara 30−50°C selama 24 jam menurunkan kadar air biji pala dari 5,59±0,25 menjadi 3,79±0,24%. Peningkatan suhu dari 50 menjadi 55°C selama 24 jam menurunkan berat biji pala dari 5,20±0,72 menjadi 5,04±0,70 g. Perlakuan suhu udara 45−50°C selama 12−24 jam dapat mengeliminasi imago A. fasciculatus pada biji pala ekspor dan suhu udara 55°C selama 24 jam dapat mengeliminasi semua stadia hidup A. fasciculatus di dalam biji pala.

Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 100 ◽  
Author(s):  
Ignacio Alba-Alejandre ◽  
Javier Alba-Tercedor ◽  
Fernando Vega

The coffee bean weevil, Araecerus fasciculatus (De Geer) (Coleoptera: Anthribidae), is a cosmopolitan insect with >100 hosts, and has been reported as a pest of stored coffee. During a study involving the coffee berry borer, we observed coffee bean weevils emerging from field-collected coffee berries and used micro-computerized tomography (micro-CT) scans to observe the insect inside the berry. Two eggs had eclosed inside the berry, resulting in observations of a newly eclosed adult beetle and a 5th instar larva, each feeding on one of the two seeds. This is the first time since 1775, when the insect was first described, that the insect has been observed inside a coffee berry.


2021 ◽  
Author(s):  
Yulong Zhu ◽  
Tatsuya Ishikawa ◽  
Tomohito J. Yamada ◽  
Srikrishnan Siva Subramanian

Abstract This paper proposes an effective approach for evaluating the influences of climate change on slope stability in seasonally cold regions. Firstly, to semi-quantitatively assess the effects of climate changes on the uncertainty of climate factors, this study analyzes the trend of the two main climate factors (precipitation and air temperature) by the regression analysis using the meteorological monitoring data of the past 120 years in different scales (e.g., world, country (Japan), and city (Sapporo)), and the meteorological simulation data obtained by downscaling the outputs of three different regional atmospheric models (RAMs) with lateral boundary conditions from three different general circulation models (GCMs). Next, to discuss the effects of different climate factors (air temperature, precipitation, etc.) and to determine the key climate factors on the slope instability, an assessment approach for evaluating the effects of climate changes on slope instability is proposed through the water content simulation and slope stability analysis using a 2-dimensional (2D) finite element method (FEM) homogeneous conceptual slope model with considering freeze-thaw action. Finally, to check the effectiveness of the above assessment approach, assessment of instability of an actual highway embankment slope with the local layer geometry is done by applying the past and predicted future climate data. The results indicate that affected by global warming, the air temperature rise in some cold cities is more serious. The predicted future weather will affect the shape of the normal density curve (NDC) of the distribution of slope failures in one year. The climate changes (especially the increase in precipitation) in the future will increase the infiltration during the Spring season. It will lengthen the time that the highway slope is in an unstable state due to high volumetric water content, thereby enhancing the instability of the slopes and threatening more slopes in the future.


2019 ◽  
Vol 99 (6) ◽  
pp. 955-957
Author(s):  
Sangu Angadi ◽  
Herb Cutforth ◽  
Brian McConkey

The difference between plant and air temperature (PT–AT) is a good indicator of water stress. PT–AT for chickpea was negatively correlated to water deficit and air temperature and positively correlated to wind; for wheat, PT–AT was positively correlated to water deficit, air temperature and solar energy; for canola, PT–AT was not correlated to the environment. Chickpea maintained positive turgor at the expense of water content and therefore more water was available for transpirational cooling. Wheat maintained water content at the expense of turgor and therefore there was little water available for transpirational cooling. For canola, PT–AT was affected by parameters other than environment.


2018 ◽  
Vol 2 (1) ◽  
pp. 28-48
Author(s):  
Napsiah Heluth ◽  
J. Matinahoru ◽  
Fransina Latumahina

The research study aims to determine the ecological conditions of dusung and non dusung, and the role of the contribution to environmental conservation in Ureng Village. The research method used was purposive sampling with observation parameters were microclimate (CO2 content, air temperature, humidity), vegetation conditions and soil conditions (soil temperature, soil moisture, soil pH, soil moisture content, soil macrofauna and organic C) . The results of  Paired of each parameter measured mostly show a smaller calculated t value compared to the t0.05 table value (1.8595) which means that the parameter is not a real difference, ie for the air humidity, t count = 0.27,; soil pH, t count = 0.6; soil macrofauna, t count = -0.66 and vegetation, t count = 1.01. As for the parameters of CO2; air temperature, soil temperature, , soil water content and organic C, t value of CO2 gives the value t count = - 16.06; air temperature = -5.11; soil temperature = -3.62; soil moisture, t count = 2,16; soil water content = 8.47, and C-Organic = 8.53; t count value which is greater than t table value which shows that there is a significant difference between CO2, air temperature, soil temperature, soil moisture, soil water content and C-Organic content in the dusung area which is greater than in the non-dusung area. From the results of the analysis it is known that dusung has a better role in environmental conservation when compared to non dusung which is indicated by the value of CO2 air temperature, soil temperature, soil moisture, soil water content and C-organic content.


Author(s):  
O. M. Kozytskyi ◽  
S. A. Shevchuk ◽  
I. A. Shevchenko ◽  
N. V. Logunova

Relevance of research. The consequences of the intensive rise in air temperature can be clearly seen in the example of shallowing natural reservoirs in which, unlike ponds and reservoirs, there it is impossible to regulate runoff. This, in particular, applies to Syne Lake, located on the northwestern outskirts of Kyiv. Since the middle of the last century, the lake and the area around it have undergone significant anthropogenic pressure, which has had a negative impact on its ecological condition. The development of a comprehensive system of measures to improve the ecology of the lake requires a thorough study of the main factors in the formation of the hydrological regime of the reservoir and their discrete assessment. Objective of research is to identify natural and man-made factors that have led to a significant decrease in the Syne Lake levels in recent years and to develop of measures to improve its ecological state. Research results. The increase in evaporation from the water surface, the decrease in precipitation and inflow from the catchment caused a significant decrease in water levels in the lake and its morphological parameters. Since 2001, the area of ​​the water mirror has decreased from 3.4 ha to 2.6 ha, the water level has decreased by more than 1 m, and the shore horizon has shifted to the middle by more than 10 m. The decrease in the water content of the lake was due to changes in the components of its water balance, which was directly affected by factors, both natural and man-made.  As a result of road construction and intensive development of the area around the lake, the catchment area decreased from 758 ha to 21 ha, which caused a sharp decrease in surface runoff to the lake. A modern network of drainage and stormwater systems within the natural catchment area of ​​the lake provides drainage into the Dnieper River. The lake overgrowing and siltation by 1-1.5 m led to clogging of underground springs and, accordingly, to a decrease in pressure underground supply. Other reasons for the lake shallowing are a decrease in precipitation and an increase in air temperature. Having a climatic standard 649 mm in Kyiv in 2019, only 521 mm fell, and in general for the last 5 years the annual rainfall has decreased by an average of 87 mm per year. The average air temperature compared to the climatic standard over the past 10 years has increased by 1.9 °C, and in the hot 2019 - by 2.9 °C, which led to a significant increase in evaporation. Compared to the climatic standard, evaporation from the surface of Kyiv reservoirs has increased over the last 10 years by 127 mm, and in 2019 it reached a record rate of 911 mm. Only due to the increased evaporation from the surface of the lake and reduced rainfall, the lake level in 2019 decreased by 30.4 cm. The results of the performed research show that for the last 5 years the positive balance of moisture in the catchment is maintained. The total amount of precipitation is 161 mm higher than the evaporation for the same period, but it is 2.4 times less than the climatic standard. In low water years as it was 2015 and 2019, the difference between precipitation and evaporation from the catchment area was only 13 and 20 mm, while in the period of 1961-1990 it was 69 mm. This led to a decrease in groundwater levels and, consequently, a decrease in their inflow to the lake. Conclusion. Intensive reduction of the water content of Syne Lake is due to a complex of natural and man-made factors, including the redistribution of runoff outside the catchment as a result of building in the area, siltation of underground feeding sources, reducing rainfall and increasing evaporation due to rising air temperatures. Reducing the intensity of lake shallowing is possible by increasing the inflow of water, by redirecting to the lake surface (after treatment) and drainage runoff from the natural catchment area of ​​the lake and beyond. Clearing and dredging the lake will increase its depth and improve groundwater inflow.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 772A-772
Author(s):  
Ricardo Cesped-Ruiz* ◽  
Bingru Huang

The American cranberry often undergoes drought stress during the summer. However, the physiological response of this species to drought is not well understood. This study was designed to determine the effects of drought on two commercial cranberry cultivars of high potential yield, `Ben Lear' and `Stevens', during a vegetative stage. The plants were subjected to drought for 15 days in a greenhouse. Soil water content, leaf water content, leaf photosynthetic rate, stomatal conductance, transpiration, differential leaf-air temperature, photochemical efficiency (Fv'/Fm') and the actual PSII efficiency (deltaF/Fm') decreased in those plants subjected to drought. Drought reduced differential leaf-air temperature at day 6 of treatment and stomatal conductance and transpiration starting at day 9 and photosynthetic rate at day 13. Drought decreased leaf water content at day 14 and Fv'/Fm' and PSII efficiency at day 15. Our results indicated that cranberry plants in vegetative stage were sensitive to drought for both cultivars and stomatal conductance was the most sensitive parameter among those examined for both cultivars.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 74
Author(s):  
Weiwei Cong ◽  
Kaijie Yang ◽  
Feng Wang

Northern hemisphere evergreen needleleaf forest (ENF) contributes a significant fraction of global water exchange but regional transpiration (T) observation in ENF ecosystems is still challenging. Traditional remote sensing techniques and terrestrial biosphere models reproduce the transpiration seasonality with difficulty, and with large uncertainties. Solar-induced chlorophyll fluorescence (SIF) emission from vegetation correlates to photosynthesis at multiple spatial and temporal scales. However, how SIF links to transpiration of evergreen forest during seasonal transition is unclear. Here, we explored the relationship between canopy SIF and T retrieved from ground observation towers in ENF. We also examined the role of meteorological and soil factors on the relationship between SIF and T. A slow decrease of SIF and T with a fast reduction in photosynthetically active radiation (PAR), air temperature, vapor pressure deficit (VPD), soil temperature and soil water content (SWC) were found in the ENF during the fall transition. The correlation between SIF and T at hourly and daily scales varied significantly among different months (Pearson correlation coefficient = 0.29–0.68, p < 0.01). SIF and T were significantly linearly correlated at hourly (R2 = 0.53, p < 0.001) and daily (R2 = 0.67, p < 0.001) timescales in the October. Air temperature and PAR were the major moderating factors for the relationship between SIF and T in the fall transition. Soil water content (SWC) influenced the SIF-T relationship at an hourly scale. Soil temperature and VPD’s effect on the SIF-T relationship was evident at a daily scale. This study can help extend the possibility of constraining ecosystem T by SIF at an unprecedented spatiotemporal resolution during season transitions.


2021 ◽  
Vol 924 (1) ◽  
pp. 012011
Author(s):  
B Susilo ◽  
M Lutfi ◽  
H E Lu’ay

Abstract Osmosis dehydration is a process of reducing water content by immersing the material in a hypertonic solution. It usually uses a sugar solution likes mono-saccharide or disaccharide. Trehalose is one type of disaccharide that can be used as a solute. Trehalose is able to maintain the nutrition content of food material and the aroma of horticulture products because it maintains and stabilizes complex molecules. Immersing of sweet corn kernel in trehalose solution was expected to maintain kernel sweet corn quality in relation to the next process. The objective of the research is to investigate the effects of the different immersing temperatures and trehalose concentrations on the physical quality of sweet corn. This study used solution with concentrations of 4%, 8%, and 12% trehalose. The variations of immersing temperature were 30°C, 40°C, and 50°C. The experiment was done with a factorial completely randomized design. The first factor was immersing temperature and the second factor was the concentration of trehalose solution. The data was analyzed using Duncan Multiple Range Test (DMRT) method. The temperature treatment of 50°C and trehalose concentration of 12% showed the highest weight reduction (6.18%), solid gain (4.5%), and water loss (10.38%). The lowest water content of corn kernel was also obtained in this treatment i.e 78.7%.


Sign in / Sign up

Export Citation Format

Share Document