Study of Multidrug Resistance Pattern among Escherichia coli isolated from patients with Urinary tract infection

Author(s):  
Soniya Goyal ◽  
Vikas Beniwal

Objective: Urinary tract infections (UTIs) are some of the most common bacterial infections encountered in community and cause of significant morbidity and high medical cost. Escherichia coli is the most common pathogen belongs to Enterobacteriaceae family responsible for majority of UTI infections. Antimicrobial drugs have been routinely prescribed for empirical treatment of UTIs which has led to a dramatic increase in antibiotic resistance pattern of E. coli. The aim of present study was to analyse the multidrug resistance patterns (MDR) of E. coli isolated from UTI patients.Methods: A total of 80 urine samples collected from the patients suspected of having UTI attending Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Mullana, Ambala were cultured using standard microbiological techniques. Antibiotic susceptibility testing of E.coli was done by using minimum inhibitory concentration (MIC). MIC of tetracycline, doxycycline, azithromycin, erythromycin, ciprofloxacin, levofloxacin, ampicillin, amoxicillin and amikacin was done by agar dilution method.Results: Of the total 46 isolates contributing 33 females and 13 males were confirmed as E. coli. About 51.34% of the female patients belonged to the age group 21-40 yr and 53.84% of the male population belonged to 41-80 yr were found to be more susceptible to UTI infection. All isolates confirmed as E.coli were found to be multidrug resistant. 80% of the isolates exhibited MICs higher than 1000mg/L against β-lactams. 20% of the E. coli isolates exhibited MICs higher than 1000mg/L against ciprofloxacin, amikacin and erythromycin. 23% and 95% of E. coli isolates exhibited MICs less than 128 mg/L against doxycycline and levofloxacin respectively.Conclusion: The present study revealed the decreased susceptibility of the E.coli to all drugs. E. coli resistance profile to beta lactams, quinolones, macrolides, tetracyclines and aminoglycosides were also found to be quite high in this study emphasizing the need to educate public about appropriate use of antibiotics.NA

2019 ◽  
Vol 152 (Supplement_1) ◽  
pp. S131-S131
Author(s):  
Mohamed Abdelmonem ◽  
Amira Husseiny Mohamed ◽  
Hesham Shafik ◽  
Mohamed Shehata ◽  
Gamal EL-Sherbiny ◽  
...  

Abstract Escherichia coli (E coli) is one of the most commonly found pathogens in hospitals. Infections such as gastroenteritis, cystitis, urinary tract infections (UTI), meningitis, septicemia, and peritonitis were previously treated with broad-spectrum antibiotics. However, the emergence of infectious diseases involving multidrug-resistant (MDR) bacterial pathogens is still a major threat to human health. This study aimed to investigate the SulI (sulfonamide), TetA (tetracycline), and TetB resistance genes in E coli isolated from urine specimens from hospitalized patients. In the present cross-sectional study, a total of 55 strains of E coli were isolated from urine cultures of patients who had UTIs in ElKasr ElEiny and ELShorta hospitals. Samples were analyzed for bacteriological, biochemical examination, and agar disc-diffusion to evaluate their antibiotic susceptibility patterns. Polymerase chain reaction (PCR) method also was used to detect SulI, TetA/B genes by specific primers. The results suggested that E coli isolates were resistant to all multiple drugs used. Ampicillin showed the highest resistance of all the isolates followed by sulfonamide and tetracycline at 70%, 62%, and 53%, respectively. The lowest resistance detected with levofloxacin was 12%; however, there is no difference in the resistance pattern of gentamycin and aztreonam. The genotypes’ amplification revealed a positive correlation between SulI (sulfonamide) and TetA/B (tetracycline) resistance encoding genes and was shown in all the tested isolates as 100%. In our study, we found a mutation for sulfonamide and tetracycline genes in E coli that was isolated from UTI patients. The mutation is responsible for a multidrug-resistant strain due to the overuse of antibiotics. However, the World Health Organization recommends the use of trimethoprim-sulfamethoxazole and ampicillin as the first choice for UTI treatment. Our study recommends regulating and limiting the use of those antibiotics in order to minimize the dissemination of multidrug resistance for E coli.


2016 ◽  
Vol 4 (1) ◽  
pp. 22-24
Author(s):  
Manjula Mehta ◽  
Jyoti Sharma ◽  
Sonia Bhardwaj

Urinary tract infections (UTIs) are among the commonest types of bacterial infections. The antibiotic treatment for UTIs is associated with important medical and economic implications. Many different microorganisms can cause UTIs though the most common pathogens are E. coli and members of family Enterobacteriaceae. The knowledge of etiology and antibiotic resistance pattern of the organisms causing urinary tract infection is essential. The present study was undertaken to evaluate trends of antibiotic susceptibility of commonly isolated uropathogens using newer antimicrobial agents, prulifloxacin, fosfomycin (FOM) and doripenem. We conclude that maintaining a record of culture results and the antibiogram may help clinicians to determine the empirical and/or specific treatment based on the antibiogram of the isolate for better therapeutic outcome.


Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 597
Author(s):  
Luca Pierantoni ◽  
Laura Andreozzi ◽  
Simone Ambretti ◽  
Arianna Dondi ◽  
Carlotta Biagi ◽  
...  

Urinary tract infections (UTIs) are among the most common bacterial infections in children, and Escherichia coli is the main pathogen responsible. Several guidelines, including the recently updated Italian guidelines, recommend amoxicillin-clavulanic acid (AMC) as a first-line antibiotic therapy in children with febrile UTIs. Given the current increasing rates of antibiotic resistance worldwide, this study aimed to investigate the three-year trend in the resistance rate of E. coli isolated from pediatric urine cultures (UCs) in a metropolitan area of northern Italy. We conducted a retrospective review of E. coli-positive, non-repetitive UCs collected in children aged from 1 month to 14 years, regardless of a diagnosis of UTI, catheter colonization, urine contamination, or asymptomatic bacteriuria. During the study period, the rate of resistance to AMC significantly increased from 17.6% to 40.2% (p < 0.001). Ciprofloxacin doubled its resistance rate from 9.1% to 16.3% (p = 0.007). The prevalence of multidrug-resistant E. coli rose from 3.9% to 9.2% (p = 0.015). The rate of resistance to other considered antibiotics remained stable, as did the prevalence of extended spectrum beta-lactamases and extensively resistant E. coli among isolates. These findings call into question the use of AMC as a first-line therapy for pediatric UTIs in our population, despite the indications of recent Italian guidelines.


1998 ◽  
Vol 66 (7) ◽  
pp. 3059-3065 ◽  
Author(s):  
David E. Johnson ◽  
C. Virginia Lockatell ◽  
Robert G. Russell ◽  
J. Richard Hebel ◽  
Michael D. Island ◽  
...  

ABSTRACT Urinary tract infection, most frequently caused byEscherichia coli, is one of the most common bacterial infections in humans. A vast amount of literature regarding the mechanisms through which E. coli induces pyelonephritis has accumulated. Although cystitis accounts for 95% of visits to physicians for symptoms of urinary tract infections, few in vivo studies have investigated possible differences between E. coli recovered from patients with clinical symptoms of cystitis and that from patients with symptoms of pyelonephritis. Epidemiological studies indicate that cystitis-associated strains appear to differ from pyelonephritis-associated strains in elaboration of some putative virulence factors. With transurethrally challenged mice we studied possible differences using three each of the most virulent pyelonephritis and cystitis E. coli strains in our collection. The results indicate that cystitis strains colonize the bladder more rapidly than do pyelonephritis strains, while the rates of kidney colonization are similar. Cystitis strains colonize the bladder in higher numbers, induce more pronounced histologic changes in the bladder, and are more rapidly eliminated from the mouse urinary tract than pyelonephritis strains. These results provide evidence that cystitis strains differ from pyelonephritis strains in this model, that this model is useful for the study of the uropathogenicity of cystitis strains, and that it would be unwise to use pyelonephritis strains to study putative virulence factors important in the development of cystitis.


2021 ◽  
Vol 8 (9) ◽  
pp. 396-407
Author(s):  
Sheriff Wakil ◽  
Mustafa Alhaji Isa ◽  
Adam Mustapa

Multidrug resistance among Escherichia coli causing urinary tract infections (UTIs) and diarrhea are major public health problem worldwide which cause difficulty in treating the infections caused by Escherichia coli due to the high resistances. The study is aimed to determine the phenotypic and molecular detection of multidrug resistant E. coli isolated from clinical samples of patients attending selected Hospitals in Damaturu, Yobe State-Nigeria. Methods: Two hundred (200) clinical samples were collected aseptically from patient diagnosed with (100 stool samples) and UTI’s (100 urine samples) using sterile universal container. The samples were processed using standard microbiological methods for identification of E. coli. Samples were cultured on MacConkey agar (stool) and Cystine lactose electrolyte deficient agar (urine). The resulting colonies of isolates were further subculture on Eosin methylene blue agar for confirmatory and followed by gram stain, biochemical identification at Microbiology laboratory unit of Yobe State Specialist and Yobe State Teaching Hospital respectively. The antimicrobial susceptibility patterns were determined using Kirby-Bauer disc diffusion techniques and the phenotypic expression of extended spectrum beta-lactamases (ESBLs) were determined using modified double disc synergy test (MDDST) and also the three (3) resistance genes (blaTEM, accC1 and qnrA) were detected using polymerase chain reaction. Results: One hundred and twenty-two (122) isolates were resistant to antibiotics. The highest level of resistance was against amoxicillin (90.2%) while the least resistance was against sparfloxacin (24.3%). Thirty-seven (37) E. coli isolates shows MDR; the highest MDR was (24.3%) while least MDR was (5.4%). The PCR amplification of resistant genes (blaTEM, accC1 and qnrA) were detected on E. coli that shows positive ESBL and the bands were separated using agarose gel electrophoresis. Conclusion: The findings of this study show augmentin, ciprofloxacin and sparfloxacin are the most effective antibiotics against E. coli isolated from patients attending the two hospitals in Damaturu; who are diagnose with UTI and diarrheic infection. The resistant genes include; blaTEM, accC1 and qnrA coding for beta-lactam, aminoglycoside and quinolones were present in E. coli isolated from patients attending selected Hospitals in Yobe State, Nigeria. Keywords: Multidrug resistant, Escherichia coli, extended spectrum beta lactamase, resistance-associated genes, urinary tract infections, diarrheic.


2014 ◽  
Vol 63 (4) ◽  
pp. 582-589 ◽  
Author(s):  
Karen L. Nielsen ◽  
Pia Dynesen ◽  
Preben Larsen ◽  
Niels Frimodt-Møller

Urinary tract infections (UTIs) are primarily caused by Escherichia coli with the patient’s own faecal flora acting as a reservoir for the infecting E. coli. Here we sought to characterize the E. coli faecal flora of UTI patients and healthy controls who had never had a UTI. Up to 20 E. coli colonies from each rectal swab were random amplified polymorphic DNA (RAPD) typed for clonality, dominance in the sample and correlation to the infecting UTI isolate in patients. Each distinct clone was phylotyped and tested for antimicrobial susceptibility. Eighty-seven per cent of the UTI patients carried the infecting strain in their faecal flora, and faecal clones causing UTI were more often dominant in the faecal flora. Patients had a larger diversity of E. coli in their gut flora by carrying more unique E. coli clones compared to controls, and patient faecal clones were more often associated with multidrug resistance compared to controls. We found a similar phylotype distribution of faecal clones from UTI patients and healthy controls, including a large proportion of B2 isolates in the control group. Faecal-UTI isolates from patients were more often associated with multidrug resistance compared to faecal-only clones, indicating a link between UTI virulence and antimicrobial resistance. Intake of any antibiotic less than 6 months prior to inclusion in the experiment occurred significantly more in patients with UTI than in controls. In contrast, presence of an intrauterine device was significantly more common in controls indicating a protective effect against UTI. In conclusion, healthy controls have a large proportion of potentially pathogenic E. coli phylotypes in their faecal flora without this causing infection.


2020 ◽  
Vol 65 (7-8) ◽  
pp. 23-26
Author(s):  
S. Suadkia ◽  
I. V. Podoprigora ◽  
N. V. Yashina ◽  
L. E. Sarukhanova ◽  
E. G. Kravtsov

Uropathogenic Escherichia coli (UPEC) is a serious health problem worldwide. UPEC's multiple drug resistance combined with virulence factors is a cause of serious concern. In childhood, urinary tract infections are of particular importance, since they can occur against the background of long-term unrecognized congenital anomalies of the kidneys and urinary tract. Of the 106 UPEC clinical isolates, 63.2% of cultures were isolated from girls' urine samples and 36.8% from boys' urine samples, which corresponds to a 1.7: 1 ratio. The antibiotic resistance of the isolated UPEC cultures was assessed in relation to 12 antimicrobial drugs. Among the tested cultures, 49% were multidrug-resistant and 20.75% were found to be resistant to imipenem. Phenotypic analysis of antibiotic susceptibility spectrum of uropathogenic E.coli (n=106) indicates a high percentage of occurrence of multi-resistant UPEC strains (49%) and imipenem-resistant UPEC strains (20.75%) among children of all age groups.


2020 ◽  
Vol 5 (4) ◽  
pp. 176
Author(s):  
Purity Z. Kubone ◽  
Koleka P. Mlisana ◽  
Usha Govinden ◽  
Akebe Luther King Abia ◽  
Sabiha Y. Essack

We investigated the phenotypic and genotypic antibiotic resistance, and clonality of uropathogenic Escherichia coli (UPEC) implicated in community-acquired urinary tract infections (CA-UTIs) in KwaZulu-Natal, South Africa. Mid-stream urine samples (n = 143) were cultured on selective media. Isolates were identified using the API 20E kit and their susceptibility to 17 antibiotics tested using the disk diffusion method. Extended-spectrum β-lactamases (ESBLs) were detected using ROSCO kits. Polymerase chain reaction (PCR) was used to detect uropathogenic E. coli (targeting the papC gene), and β-lactam (blaTEM/blaSHV-like and blaCTX-M) and fluoroquinolone (qnrA, qnrB, qnrS, gyrA, parC, aac(6’)-Ib-cr, and qepA) resistance genes. Clonality was ascertained using ERIC-PCR. The prevalence of UTIs of Gram-negative etiology among adults 18–60 years of age in the uMgungundlovu District was 19.6%. Twenty-six E. coli isolates were obtained from 28 positive UTI samples. All E. coli isolates were papC-positive. The highest resistance was to ampicillin (76.9%) and the lowest (7.7%) to amoxicillin/clavulanic acid and gentamycin. Four isolates were multidrug-resistant and three were ESBL-positive, all being CTX-M-positive but SHV-negative. The aac(6’)-Ib-cr and gyrA were the most detected fluoroquinolone resistance genes (75%). Isolates were clonally distinct, suggesting the spread of genetically diverse UPEC clones within the three communities. This study highlights the spread of genetically diverse antibiotic-resistant CA-UTI aetiologic agents, including multidrug-resistant ones, and suggests a revision of current treatment options for CA-UTIs in rural and urban settings.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Nguyen Thi Khanh Nhu ◽  
Minh-Duy Phan ◽  
Brian M. Forde ◽  
Ambika M. V. Murthy ◽  
Kate M. Peters ◽  
...  

ABSTRACT Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections. Nearly half of all UPEC strains secrete hemolysin, a cytotoxic pore-forming toxin. Here, we show that the prevalence of the hemolysin toxin gene (hlyA) is highly variable among the most common 83 E. coli sequence types (STs) represented on the EnteroBase genome database. To explore this diversity in the context of a defined monophyletic lineage, we contextualized sequence variation of the hlyCABD operon within the genealogy of the globally disseminated multidrug-resistant ST131 clone. We show that sequence changes in hlyCABD and its newly defined 1.616-kb-long leader sequence correspond to phylogenetic designation, and that ST131 strains with the strongest hemolytic activity belong to the most extensive multidrug-resistant sublineage (clade C2). To define the set of genes involved in hemolysin production, the clade C2 strain S65EC was completely sequenced and subjected to a genome-wide screen by combining saturated transposon mutagenesis and transposon-directed insertion site sequencing with the capacity to lyse red blood cells. Using this approach, and subsequent targeted mutagenesis and complementation, 13 genes were confirmed to be specifically required for production of active hemolysin. New hemolysin-controlling elements included discrete sets of genes involved in lipopolysaccharide (LPS) inner core biosynthesis (waaC, waaF, waaG, and rfaE) and cytoplasmic chaperone activity (dnaK and dnaJ), and we show these are required for hemolysin secretion. Overall, this work provides a unique description of hemolysin sequence diversity in a single clonal lineage and describes a complex multilevel system of regulatory control for this important toxin. IMPORTANCE Uropathogenic E. coli (UPEC) is the major cause of urinary tract infections and a frequent cause of sepsis. Nearly half of all UPEC strains produce the potent cytotoxin hemolysin, and its expression is associated with enhanced virulence. In this study, we explored hemolysin variation within the globally dominant UPEC ST131 clone, finding that strains from the ST131 sublineage with the greatest multidrug resistance also possess the strongest hemolytic activity. We also employed an innovative forward genetic screen to define the set of genes required for hemolysin production. Using this approach, and subsequent targeted mutagenesis and complementation, we identified new hemolysin-controlling elements involved in LPS inner core biosynthesis and cytoplasmic chaperone activity, and we show that mechanistically they are required for hemolysin secretion. These original discoveries substantially enhance our understanding of hemolysin regulation, secretion and function.


2021 ◽  
Vol 10 (7) ◽  
pp. 414-418
Author(s):  
Greeshma Hareendranath

BACKGROUND Escherichia coli is one of the most important causes of urinary tract infections (UTIs). Increased antibiotic resistance may limit the therapeutic options for the treatment of these infections. Fosfomycin trometamol is a phosphonic acid derivative, which acts primarily by interfering with bacterial peptidoglycan synthesis with broad spectrum of activity against agents causing urinary tract infection with good antibiofilm activity and limited reports of resistance and hence is increasingly called upon for the treatment of multi drug resistant (MDR) organisms causing UTI. There are limited studies from India regarding the efficacy of this drug; so, the study was conducted to determine the in vitro efficacy of fosfomycin against uropathogenic MDR E. coli. METHODS This was a prospective study done in the Department of Microbiology, Government T.D. Medical College, Alappuzha, over a period of 1 year from April 2018 to March 2019. A total of 150 MDR urine samples were processed by routine microbiological methods and after identification of E. coli urinary isolates, antibiotic susceptibility testing was performed and results were interpreted following the Clinical and Laboratory Standards Institute guidelines (CLSI). Fosfomycin sensitivity was tested by the Kirby-Bauer disc diffusion method. RESULTS Among the 150 MDR urinary E. coli isolates, 148 (98 %) were sensitive to fosfomycin in our study. The susceptibility rate of fosfomycin was clearly higher than other commonly used drugs for UTI. All extended-spectrum beta-lactamases (ESBL) producing E. coli were sensitive to this drug. The susceptibility for nitrofurantoin was fair, whereas for ampicillin, norfloxacin, cefotaxime and trimethoprim / sulphamethoxazole was found poor. Relatively better rates of resistance were observed for parenteral antibiotics. CONCLUSIONS With an enormous increase in the bacterial pathogens resistant to first-line antibiotics, there has been a revival in the use of fosfomycin. The convenience of a single dose regimen, a good activity proven invitro, and minimal propensity for development of resistance pathogens makes fosfomycin an attractive regimen for the treatment of uncomplicated community and hospital acquired UTIs. In this regard, with the existing limited options for treating MDR organisms, fosfomycin finds its utility acting as an effective and promising option in the treatment of UTIs due to MDR pathogens in the future.


Sign in / Sign up

Export Citation Format

Share Document