scholarly journals ANALYSIS OF THE ANTIOXIDANT ACTIVITY OF GERANIOL EMPLOYING VARIOUS IN-VITRO MODELS: RELEVANCE TO NEURODEGENERATION IN DIABETIC NEUROPATHY

Author(s):  
Sathya N Prasad ◽  
Murali Muralidhara

Objective: The aim of this study was to analyze antioxidant effect of geraniol (GE) in different in vitro models.Methods: Initially, the antioxidant activity of GE was assessed by diphenyl picrylhydrazyl radical (DPPH) assay. The modulatory effect of GE against 2,2’-azobis(2-amidinopropane) dihydrochloride induced lipid peroxidation in rat brain regions (cortex and cerebellum) and sciatic nerve (SN) homogenates was determined. Further, the effect of GE was assessed against hyperglycemia-induced oxidative stress (OS) in SHSY5Y, a human neuroblastoma cell line.Results: GE proved to be a good scavenger of DPPH free radical (inhibitory concentration 50% [IC50] value = 663 nmol) and could lower the lipid peroxidation levels in rat brain tissue and SN homogenates (25-40%). Further, it rescue the SHSY5Y cells from hyperglycemia-induced death. Co-exposure of GE with the IC50 level of glucose (100 mM) lowered the levels of reactive oxygen species, hydrogen peroxides and 3-nitrotyrosine levels with concomitant elevation in the glutathione levels (about two folds).Conclusion: Collectively from these findings and other studies previously conducted (from our lab and others) emphasize the potential benefit of GE against OS, a progressive pathological feature of neurodegenerative disorders. 

2020 ◽  
Vol 17 (2) ◽  
pp. 169-183 ◽  
Author(s):  
İrem Bozbey ◽  
Suat Sari ◽  
Emine Şalva ◽  
Didem Kart ◽  
Arzu Karakurt

Background: Azole antifungals are among the first-line drugs clinically used for the treatment of systemic candidiasis, a deadly type of fungal infection that threatens mostly immunecompromised and hospitalized patients. Some azole derivatives were also reported to have antiproliferative effects on cancer cells. Objective: In this study, 1-(4-trifluoromethylphenyl)-2-(1H-imidazol-1-yl)ethanone (3), its oxime (4), and a series of its novel oxime ester derivatives (5a-v) were synthesized and tested for their in vitro antimicrobial activities against certain ATCC standard strains of Candida sp. fungi and bacteria. The compounds were also tested for their cytotoxic effects against mouse fibroblast and human neuroblastoma cell lines. Molecular modeling studies were performed to provide insights into their possible mechanisms for antifungal and antibacterial actions. Methods: The compounds were synthesized by the reaction of various oximes with acyl chlorides. Antimicrobial activity of the compounds was determined according to the broth microdilution method. For the determination of cytotoxic effect, we used MTS assay. Molecular docking and QM/MM studies were performed to predict the binding mechanisms of the active compounds in the catalytic site of C. albicans CYP51 (CACYP51) and S. aureus flavohemoglobin (SAFH), the latter of which was created via homology modeling. Results: 5d, 5l, and 5t showed moderate antifungal activity against C. albicans, while 3, 5c, and 5r showed significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Most of the compounds showed approximately 40-50% inhibition against the human neuroblastoma cells at 100 µM. In this line, 3 was the most potent with an IC50 value of 82.18 μM followed by 5a, 5o, and 5t. 3 and 5a were highly selective to the neuroblastoma cells. Molecular modelling results supported the hypothesis that our compounds were inhibitors of CAYP51 and SAFH. Conclusion: This study supports that oxime ester derivatives may be used for the development of new antimicrobial and cytotoxic agents.


1993 ◽  
Vol 291 (2) ◽  
pp. 369-374 ◽  
Author(s):  
W S Faraci ◽  
S H Zorn ◽  
A V Bakker ◽  
E Jackson ◽  
K Pratt

Despite limiting side-effects, lithium is the drug of choice for the treatment of bipolar depression. Its action may be due, in part, to its ability to dampen phosphatidylinositol turnover by inhibiting myo-inositol monophosphatase. Beryllium has been identified as a potent inhibitor of partially purified myo-inositol monophosphatase isolated from rat brain (Ki = 150 nM), bovine brain (Ki = 35 nM), and from the human neuroblastoma cell line SK-N-SH (Ki = 85 nM). It is over three orders of magnitude more potent than LiCl (Ki = 0.5-1.2 mM). Kinetic analysis reveals that beryllium is a competitive inhibitor of myo-inositol monophosphatase, in contrast with lithium which is an uncompetitive inhibitor. Inhibition of exogenous [3H]inositol phosphate hydrolysis by beryllium (IC50 = 250-300 nM) was observed to the same maximal extent as that seen with lithium in permeabilized SK-N-SH cells, reflecting inhibition of cellular myo-inositol monophosphatase. However, in contrast with that observed with lithium, agonist-induced accumulation of inositol phosphate was not observed with beryllium in permeabilized and non-permeabilized SK-N-SH cells and in rat brain slices. Similar results were obtained in permeabilized SK-N-SH cells when GTP-gamma-S was used as an alternative stimulator of inositol phosphate accumulation. The disparity in the actions of beryllium and lithium suggest that either (1) selective inhibition of myo-inositol monophosphatase does not completely explain the action of lithium on the phosphatidylinositol cycle, or (2) that uncompetitive inhibition of myo-inositol monophosphatase is a necessary requirement to observe functional lithium mimetic activity.


2021 ◽  
Vol 11 (10) ◽  
pp. 1908-1917
Author(s):  
Rongkang Mai ◽  
Yiyao Cao ◽  
Huitian Yu ◽  
Yong Zheng ◽  
Juke Huang

80 male Wistar rats were stochastically assigned to Sham + Vehicle group, Sham + BUT group, PD + Vehicle group and PD + BUT group. Rotenone PD model rats were prepared by subcutaneous injection of rotenone sunflower oil emulsion 2 mg/(kg · d) for 5 consecutive weeks. Butylphthalide 80 mg/(kg · d) were given to the rats in Sham + BUT group and PD + BUT group by gavage from the first day of rotenone injection for 5 weeks. Subsequently, the motor retardation ability and the morphological changes of the substantia nigra (SN) of each group were evaluated. Meanwhile, the levels of neuronal injury, apoptosis, inflammation and oxidative stress in each group of rats were assayed. The impact of BUT treatment on miR-146a-5p expression and PI3K/AKT signal pathway in rat brain tissue was assayed. Finally, by constructing a PD cell model of the neurotoxin 6-hydroxydopamine (6-OHDA)-treated human neuroblastoma cell line SH-SY5Y, the in vitro anti-PD pharmacological effect of BUT was further verified.


2019 ◽  
Vol 45 (6) ◽  
pp. 1399-1409
Author(s):  
Nafisa Ferdous ◽  
Sirisha Kudumala ◽  
Serena Sossi ◽  
Lucia Carvelli

AbstractAmphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4707
Author(s):  
Maria Camilla Bergonzi ◽  
Marzia Vasarri ◽  
Giulia Marroncini ◽  
Emanuela Barletta ◽  
Donatella Degl’Innocenti

Thymoquinone (TQ) is the main active ingredient of Nigella sativa essential oil, with remarkable anti-neoplastic activities with anti-invasive and anti-migratory abilities on a variety of cancer cell lines. However, its poor water solubility, high instability in aqueous solution and pharmacokinetic drawbacks limits its use in therapy. Soluplus® and Solutol® HS15 were employed as amphiphilic polymers for developing polymeric micelles (SSM). Chemical and physical characterization studies of micelles are reported, in terms of size, homogeneity, zeta potential, critical micelle concentration (CMC), cloud point, encapsulation efficiency (EE%), load capacity (DL), in vitro release, and stability. This study reports for the first time the anti-migratory activity of TQ and TQ loaded in SSM (TQ-SSM) in the SH-SY5Y human neuroblastoma cell line. The inhibitory effect was assessed by the wound-healing assay and compared with that of the unformulated TQ. The optimal TQ-SSM were provided with small size (56.71 ± 1.41 nm) and spherical shape at ratio of 1:4 (Soluplus:Solutol HS15), thus increasing the solubility of about 10-fold in water. The entrapment efficiency and drug loading were 92.4 ± 1.6% and 4.68 ± 0.12, respectively, and the colloidal dispersion are stable during storage for a period of 40 days. The TQ-SSM were also lyophilized to obtain a more workable product and with increased stability. In vitro release study indicated a prolonged release of TQ. In conclusion, the formulation of TQ into SSM allows a bio-enhancement of TQ anti-migration activity, suggesting that TQ-SSM is a better candidate than unformulated TQ to inhibit human SH-SY5Y neuroblastoma cell migration.


1996 ◽  
Vol 76 (6) ◽  
pp. 3920-3927 ◽  
Author(s):  
M. Toselli ◽  
P. Tosetti ◽  
V. Taglietti

1. The electrophysiological properties of voltage-dependent sodium currents were studied in the human neuroblastoma cell line SH-SY5Y before and after in vitro differentiation with retinoic acid, with the use of the whole cell variant of the patch-clamp technique. 2. Voltage steps from a holding level of -90 mV to depolarizing potentials elicited, in both undifferentiated and differentiated cells, fast inward sodium currents that were full inactivating and tetrodotoxin sensitive. 3. In undifferentiated cells the current peaked at -10 mV, the half-activation potential was -35 mV, and the half-inactivation potential was -81 mV. In differentiated cells the current peaked at + 10 mV, the half-activation potential was -28 mV, and the half-inactivation potential was -56 mV. Moreover, the peak current amplitude was about a factor of 2 larger and inactivation kinetics was about a factor of 2 slower than in undifferentiated cells. 4. This diversity in sodium channel properties was related to differences in cell excitability. Under current-clamp conditions, intracellular injection of rectangular depolarizing current stimuli from a hyperpolarized membrane potential of about -100 mV elicited graded and weak regenerative responses in undifferentiated cells, whereas overshooting action potentials with faster rising phases could be elicited in differentiated cells.


Chemosphere ◽  
1995 ◽  
Vol 30 (9) ◽  
pp. 1709-1715 ◽  
Author(s):  
D. Cova ◽  
R. Perego ◽  
C. Nebuloni ◽  
G. Fontana ◽  
G.P. Molinari

2008 ◽  
Vol 8 (12) ◽  
pp. 6223-6231 ◽  
Author(s):  
Gianni Ciofani ◽  
Vittoria Raffa ◽  
Arianna Menciassi ◽  
Paolo Dario

While in the last years applications of carbon nanotubes in the field of biotechnology have been largely proposed, biomedical applications of boron nitride nanotubes (BNNTs) are yet totally unexplored. BNNTs have very interesting physical properties that should be exploited in the biomedical field. At this date, studies on their biocompatibility are completely missing and the first issue behind this investigation is the dispersion of BNNTs in aqueous solutions. In this paper the authors propose, for the first time, a technique for obtaining BNNT stable dispersions suitable for biological applications, based on polyethyleneimine (PEI) water solutions. Based on authors' knowledge, in vitro testing performed on human neuroblastoma cell line (SH-SY5Y) is the first study of interaction between BNNTs and living material. Experimental results showed a satisfactory cell viability up to a concentration of 5.0 μg/ml PEI-BNNTs in the cell culture medium.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Noor Azuin Suliman ◽  
Mohamad Aris Mohd Moklas ◽  
Che Norma Mat Taib ◽  
Mohd Ilham Adenan ◽  
Mohamad Taufik Hidayat Baharuldin ◽  
...  

Opiate abuse has been studied to cause adaptive changes observed in the presynaptic release and the mediated-synaptic plasticity proteins. The involvement of neuronal SNARE proteins reveals the role of the neurotransmitter release in expressing the opioid actions. The present study was designed to determine the effect of the alkaloid extract ofErythroxylum cuneatum(E. cuneatum) against chronic morphine and the influences ofE. cuneatumon neurotransmission processes observedin vitro. The human neuroblastoma cell line, SK-N-SH, was treated with the morphine, methadone, orE. cuneatum. The cell lysates were collected and tested forα-synuclein, calmodulin, vesicle-associated membrane protein 2 (VAMP 2), and synaptotagmin 1. The extract ofE. cuneatumwas observed to upregulate the decreased expression of dependence proteins, namely,α-synuclein and calmodulin. The effects were comparable to methadone and control. The expressions of VAMP 2 and synaptotagmin 1 were normalised by the plant and methadone. The extract ofE. cuneatumwas postulated to treat dependence symptoms after chronic morphine and improve the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) protein involved in synaptic vesicle after.


Sign in / Sign up

Export Citation Format

Share Document