scholarly journals A REVIEW ON NANOEMULSIONS: FORMULATION, COMPOSITION, AND APPLICATIONS

Author(s):  
KHAN MOHAMMAD HAMID ◽  
MOHAMMAD WAIS ◽  
GAURANG SAWANT

Nanoemulsions are sub-micron sized emulsions that are undergoing detailed assessment as potential drug carriers for enhancing the delivery of therapeutic agents. These are to date the most developed nanoparticulate systems for the systemic delivery of active pharmaceutical for controlled drug delivery as well as targeting. These are the thermodynamically durable isotropic system, in which two incompatible liquids (water and oil) are blended to form a single homogenous phase by utilizing a required quantity of surfactants to achieve mixing with a droplet diameter approaching roughly in the range of 0.5–100 μm. They find applications in various fields such as cosmetics as well as are adopted in various routes of administration.

2014 ◽  
Vol 2 (01) ◽  
pp. 122-127 ◽  
Author(s):  
Rohit Rajendra Bhosale ◽  
Riyaz Ali Osmani ◽  
Prasanna Prasad Ghodake ◽  
Sabir Majjid Shaikh ◽  
Sarika Raghunath Chavan

Nanoemulsions are submicron sized emulsion that is under extensive investigation as drug carriers for improving the delivery of therapeutic agents. These are by far the most advanced nanoparticle systems for the systemic delivery of active pharmaceutical for controlled drug delivery and targeting. These are the thermodynamically stable isotropic system in which two immiscible liquid (water and oil) are mixed to form a single phase by means of an appropriate surfactants or it mixes with a droplet diameter approximately in the range of 0.5-100 μm. Nanoemulsion droplet size falls typically in the range of 20-200 nm and shows a narrow size distribution. Nanoemulsion show great promise for the future of cosmetics, diagnostics, drug therapies and biotechnologies. Thus the aim of this review is focused on nanoemulsion advantage and disadvantage, various methods of preparation, characterization techniques and the various applications of sub micron size emulsion in different areas such as various route of administration, in chemotherapy, in cosmetic, etc.


2019 ◽  
Vol 25 (11) ◽  
pp. 1172-1186 ◽  
Author(s):  
Dilshad Qureshi ◽  
Suraj Kumar Nayak ◽  
Samarendra Maji ◽  
Doman Kim ◽  
Indranil Banerjee ◽  
...  

Background: With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient’s body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs. Methods: Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery. Results: Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications. Conclusion: In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 211 ◽  
Author(s):  
Esen Sokullu ◽  
Hoda Soleymani Abyaneh ◽  
Marc A. Gauthier

Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities.


Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4756-4766 ◽  
Author(s):  
Yi Wang ◽  
Zhen Li ◽  
Jie Ouyang ◽  
George Em Karniadakis

Thermoresponsive hydrogels have been studied intensively for creating smart drug carriers and controlled drug delivery.


Soft Matter ◽  
2020 ◽  
Vol 16 (45) ◽  
pp. 10345-10357 ◽  
Author(s):  
Kai Yue ◽  
Yu You ◽  
Chao Yang ◽  
Yongjian Niu ◽  
Xinxin Zhang

Externally triggered thermogenic nanoparticles (NPs) are potential drug carriers and heating agents for drug delivery and hyperthermia.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4330
Author(s):  
Ngonidzashe Ruwizhi ◽  
Blessing Atim Aderibigbe

Several researchers have reported the use of cholesterol-based carriers in drug delivery. The presence of cholesterol in cell membranes and its wide distribution in the body has led to it being used in preparing carriers for the delivery of a variety of therapeutic agents such as anticancer, antimalarials and antivirals. These cholesterol-based carriers were designed as micelles, nanoparticles, copolymers, liposomes, etc. and their routes of administration include oral, intravenous and transdermal. The biocompatibility, good bioavailability and biological activity of cholesterol-based carriers make them potent prodrugs. Several in vitro and in vivo studies revealed cholesterol-based carriers potentials in delivering bioactive agents. In this manuscript, a critical review of the efficacy of cholesterol-based carriers is reported.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76861-76866 ◽  
Author(s):  
Komal Sethi ◽  
Shalini Sharma ◽  
Indrajit Roy

We report the synthesis, characterisation, and magnetically controlled drug delivery applications of drug-encapsulated iron carboxylate nanoscale metal organic frameworks (NMOFs).


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2661 ◽  
Author(s):  
Jianghua Li ◽  
Chao Cai ◽  
Jiarui Li ◽  
Jun Li ◽  
Jia Li ◽  
...  

This review discusses different forms of nanomaterials generated from chitosan and its derivatives for controlled drug delivery. Nanomaterials are drug carriers with multiple features, including target delivery triggered by environmental, pH, thermal responses, enhanced biocompatibility, and the ability to cross the blood-brain barrier. Chitosan (CS), a natural polysaccharide largely obtained from marine crustaceans, is a promising drug delivery vector for therapeutics and diagnostics, owing to its biocompatibility, biodegradability, low toxicity, and structural variability. This review describes various approaches to obtain novel CS derivatives, including their distinct advantages, as well as different forms of nanomaterials recently developed from CS. The advanced applications of CS-based nanomaterials are presented here in terms of their specific functions. Recent studies have proven that nanotechnology combined with CS and its derivatives could potentially circumvent obstacles in the transport of drugs thereby improving the drug efficacy. CS-based nanomaterials have been shown to be highly effective in targeted drug therapy.


2021 ◽  
Vol 22 (18) ◽  
pp. 10118
Author(s):  
Jisu Song ◽  
Chao Lu ◽  
Jerzy Leszek ◽  
Jin Zhang

Central nervous system (CNS) diseases are the leading causes of death and disabilities in the world. It is quite challenging to treat CNS diseases efficiently because of the blood–brain barrier (BBB). It is a physical barrier with tight junction proteins and high selectivity to limit the substance transportation between the blood and neural tissues. Thus, it is important to understand BBB transport mechanisms for developing novel drug carriers to overcome the BBB. This paper introduces the structure of the BBB and its physiological transport mechanisms. Meanwhile, different strategies for crossing the BBB by using nanomaterial-based drug carriers are reviewed, including carrier-mediated, adsorptive-mediated, and receptor-mediated transcytosis. Since the viral-induced CNS diseases are associated with BBB breakdown, various neurotropic viruses and their mechanisms on BBB disruption are reviewed and discussed, which are considered as an alternative solution to overcome the BBB. Therefore, most recent studies on virus-mimicking nanocarriers for drug delivery to cross the BBB are also reviewed and discussed. On the other hand, the routes of administration of drug-loaded nanocarriers to the CNS have been reviewed. In sum, this paper reviews and discusses various strategies and routes of nano-formulated drug delivery systems across the BBB to the brain, which will contribute to the advanced diagnosis and treatment of CNS diseases.


Sign in / Sign up

Export Citation Format

Share Document