scholarly journals APPLICATION OF LIQUISOLID TECHNOLOGY TO ENHANCE THE DISSOLUTION OF CEFIXIME FROM ITS ORAL CAPSULES

2018 ◽  
Vol 10 (5) ◽  
pp. 214
Author(s):  
Zainab H. Mahdi ◽  
Nidhal K. Maraie ◽  
Zahraa Amer Al-juboori

Objective: Oral drug delivery is the most desired route for drug administration for its well-known features. Therefore, many attempts were implemented to improve the poor solubility of many active ingredients in order to enhance their dissolution and absorption via the oral route. From these, the liquisolid system is a very promising technology for enhancing solubility and bioavailability of poorly soluble drugs.Methods: In this research, oral capsules of cefixime were prepared by liquisolid technique after mixing different concentrations of the drug with propylene glycol (non-volatile solvent), followed by their addition to different proportions of microcrystalline cellulose and aerosil i.e. different carrier: coating (R-value). The liquisolid capsules were evaluated for In vitro disintegration and dissolution in addition to content uniformity and weight variations. Furthermore, solubility studies, scanning electron microscope (SEM) were performed to the optimum formula. Finally, the release profile of the optimum formula was compared with the marketed cefixime capsules.Results: Liquisolid formula (F3) with 70% cefixime and R-value equals 10 was selected as the optimum formula having higher % release in 45 min (99.5%±0.53) compared to other formulas with faster release rate in the first 20 min than marketed capsules. It had an acceptable disintegration time (25 min±0.76), content uniformity (197.6±0.92) and weight variation (698.04±0.16). Results of solubility study, SEM assured enhancement in solubility and dispersibility of the drug.Conclusion: This research proved that liquisolid system is a promising technology in improving the solubility and dissolution of cefixime from its capsules and hence it may improve its absorption and oral bioavailability.

Author(s):  
Rina G. Maskare ◽  
Nitin H. Indurwade ◽  
Aparna O. Yadav ◽  
Ajita S. Kesharwani ◽  
Aishwarya A. Jain ◽  
...  

The present work concerned with formulation and evaluation of fast disintegrating tablet of Topiramate by using natural superdisintegrants like Trigonellafoenum graceum (fenugreek) powder, Plantago ovata powder, dehydrated banana powder, soy polysaccharide, linseed powder. Topiramate is an antiepileptic drug and also used in migraine. Preformulation studies like solubility, melting point were studied. Five formulations were prepared using different natural superdisintegrant with same concentrations by using direct compression method. All the formulations were evaluated for precompression parameters and all the parameters were found to be within the pharmacopoeial limits. Post compression parameters like hardness of the tablet, thickness of the tablet, friability test, weight variation, disintegration test, in-vitro dissolution test, drug content were performed. The formulation F-5 containing Trigonellafoenum-graceum (fenugreek) powder shown disintegration time of 12sec. Rapid disintegration of the Trigonellafoenum-graceum due to its rapid water absorbency swells in water to the extent of 200–300% disintegrates rapidly for quick and complete disintegration of the tablet. An accelerated stability study on optimized formulation was performed and it was found to be stable. It can be concluded that Trigonellafoenum-graceum (fenugreek) powder as Superdisintegrant showed better release than soy polysaccharide, plantago ovata powder, dehydrated banana powder and linseed powder.


2015 ◽  
Vol 51 (3) ◽  
pp. 569-578 ◽  
Author(s):  
Nilesh Choudhary ◽  
Jasmine Avari

Orally disintegrating systems have carved a niche amongst the oral drug delivery systems due to the highest compliance of the patients, especially the geriatrics and pediatrics. In addition, patients suffering from dysphagia, motion sickness, repeated emesis and mental disorders prefer these medications because they cannot swallow large quantity of water. Further, drugs exhibiting satisfactory absorption from the oral mucosa or intended for immediate pharmacological action can be advantageously formulated in these dosage forms. However, the requirements of formulating these dosage forms with mechanical strength sufficient to withstand the rigors of handling and capable of disintegrating within a few seconds on contact with saliva are inextricable. The purpose of this research was to mask the bitter taste of granisetron hydrochloride. To mask the taste Kollicoat(r) Smartseal 30D was used as coating polymer for pellet coating. The coated pellets of the drug was directly compressed with different superdisintegrant as AC-Di-Sol, Explotab and Kollidon CL in different concentration 5.0-7.5% w/w into an ODT. The prepared tablets were evaluated for hardness, friability, weight variation, wetting time, wet absorption ratio, in-vitro disintegration time and in vitro dissolution studies. Tablets exhibited quick disintegration characteristics with Kollidon CL in concentration 7.5% w/w i.e., within 20 seconds, which is characteristic of orally disintegrating dosage forms. More than 98% of drug was released from the formulations within 15 minutes. Formulations subjected to stability testing as per the ICH guidelines for 3 months, indicated stability with no change in taste, hardness, drug content, disintegration time and dissolution profiles. Thus, the results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated dosage forms in the oral cavity.


2017 ◽  
Vol 9 (6) ◽  
pp. 39
Author(s):  
Zainab E. Jassim

Objective: The purpose of this study was to enhance the dissolution pattern of the practically water-insoluble diuretic drug, furosemide through its formulation into liquisolid tablets.Methods: A mathematical model was used to formulate four liquisolid powder systems using polyethylene glycol 400 as a non-volatile water miscible liquid vehicle. The liquid loading factors of the vehicle were used to calculate the optimum quantities of carrier (Avicel PH 102) and coating materials (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures and (R) ratio used was 25. The liquisolid tablets were evaluated for weight variation, percent friability, hardness, content uniformity, disintegration time and in vitro drug release profile. Drug and the prepared systems were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies.Results: The enhanced dissolution rate due to the increased wetting properties and the large available surface areas for dissolution were obtained in case of the liquisolid tablets. The selected optimal formulation (F2) of 50% drug concentration released 90% of its content during the first 10 min compared to 65% of DCT. FTIR studies revealed that there was no interaction between drug and polymers. DSC and PXRD indicated conversion of crystalline to amorphous form of furosemide. Conclusion: The dissolution rate of furosemide can be enhanced to a great extent by liquisolid technique.


Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


2018 ◽  
Vol 6 (3) ◽  
pp. 5-16 ◽  
Author(s):  
ABRAHAM LINKU ◽  
JOSEPH SIJIMOL

The aim of present work was the development of fast dissolving oral film of Loratadine to overcome the limitations of current routes of administration, to provide immediate action and increase the patient compliance. To improve the bioavailability of the drug, fast dissolving oral film were formulated using different grades of Hydroxy Propyl Methyl Cellulose(HPMC) and various plasticizers like Polyethylene Glycol(PEG) 400, glycerol, Propylene glycol(PG) by solvent casting method. The formulated films were evaluated for film thickness, surface pH, folding endurance, weight variation, % moisture loss, exvivo permeation study, tensile strength, % elongation, drug content uniformity, in vitro dissolution studies,in vitro disintegration test and in vivo study. The optimized formulation (F9) containing HPMC E5 and glycerol showed minimum disintegration time (10.5 s), highest in vitrodissolution (92.5%) and satisfactory stability. Ex vivo permeation study of optimized formulation showed a drug release of 80.6% within 10 min. The milk induced leucocytosis inrat proved that fast dissolving oral films of Loratadine produced a faster onset of action compared to the conventional tablets. These findings suggest that fast dissolving oral film of Loratadine could be potentially useful for treatment of allergy where quick onset of action is required.


2019 ◽  
Vol 9 (2) ◽  
pp. 270-279
Author(s):  
Rada Santosh Kumar ◽  
T. Naga Satya Yagnesh

The current scenario emphasize on oral administration. The main disadvantage in oral administration was difficulty in swallowing for pediatric and geriatric patients. To solve this problem in oral drug delivery system, the formulation of fast dissolving systems found to be the best alternatives.  The present investigation involves in the evaluation of starch succinate as a superdintegrant in the formulation of fast dissolving tablets of poorly soluble drugs employing 23factorial design. Starch succinate was synthesized by esterification process. The synthesized starch succinate was subjected to physical and micromeritic evaluation. All fast dissolving tablets were evaluated for drug content, hardness, friability, disintegration time and other dissolution characteristics like percent dissolved in 5 min (PD5), dissolution efficiency in 5 min (DE5%) and first order rate constant(K1). The starch succinate prepared was found to be fine, free flowing crystalline powder. Starch succinate exhibited good swelling in water. Fourier transform infrared spectra (FTIR) and Differential scanning calorimetry (DSC) study indicated the absence of interaction between ibuprofen and starch succinate. All the fast dissolving tablets formulated employing starch succinate were of good quality with regard to drug content (200±2%), hardness (3.6–4.0 kg/sq. cm), and friability (0.12-0.15%). The optimised formulation F8 has the least disintegration time i.e., 15±0. 02s. The in–vitro wetting time was less (i.e., 15s) in optimized formulation F8. The water absorption ratio of the formulated tablets was found to be in the range of 31.4±0.01 to 68.0±0.04%. The cumulative drug dissolved in the optimized formulation F8 was found to be 99.81± 0.22% in 5 min. Starch succinate was found to be a superdisintegrant which enhanced the dissolution efficiency with the ibuprofen and hence it could be used in the formulation of fast dissolving tablets to bring immediate release of the contained drug within 5 minutes. Keywords: Fast dissolving, Superdisintegrant, Starch succinate, Dissolution efficiency.


Author(s):  
GAMIL Q. OTHMAN ◽  
YASER M. AL-WORAFI ◽  
MOHAMMED M. BATTAH ◽  
ABDULSALAM M. HALBOUP ◽  
HASSAN M. HASSAN

Objective: The objective of the current study was to evaluate the quality control parameters of seven brands of levofloxacin 500 mg film-coated tablet available in the Yemeni market. Methods: Physicochemical parameters assay was performed for seven brands of levofloxacin 500 mg film-coated tablet. Each brand was subjected to official and unofficial in vitro quality control tests, including weight variation, thickness, hardness, friability, disintegration, dissolution, and content uniformity assay by High-Performance Liquid Chromatography (HPLC). Results: Out of seven, six brands of levofloxacin 500 mg film-coated tablet passed official specified assay tests according to the United States Pharmacopeia (USP) specifications. They showed a similar profile of thickness ranged between±0.01 and 0.10%, friability ranged between 0.01% and 0.34%, disintegration time ranged between 3.00 and 15.00 min, dissolution percentage ranged between 90.650 and 103.05 and content uniformity ranged between 93.62 and 107.12%. Regarding weight variation and hardness, six brands passed the weight variation test and only three brands showed optimum range (10-20 kg) of hardness test. Only one brand failed to pass the weight variation test, and four brands failed to pass the optimum range (10-20 kg) of hardness. Conclusion: There are no remarkable differences between the seven brands regarding in vitro quality control tests of content uniformity, thickness, friability, disintegration, and dissolution. Even though four brands were above the optimum range of hardiness, they showed complete disintegration and dissolution within the acceptable limit. Regular assessment of marketed drugs is required to ensure bioequivalent to their innovators.


2019 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Sreenivas Patro Sisinthy ◽  
Shubbaneswarei Selladurai

Objective: The objective of this research was to formulate cinnarizine tablets using the liquid-solid compact technique to enhance its solubility and dissolution rate.Methods: Cinnarizine liquid-solid compacts were formulated using propylene glycol as the non-volatile solvent, Neusilin US2 as the carrier material, Aerosil 200 as the coating material and croscarmellose sodium as the disintegrant. The interaction between drug and excipients were characterized by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Different batches of liquid, solid compacts were prepared by using varying carrier-coating excipient ratio and different concentration of liquid medication. Flow parameters such as bulk density, tapped density, Carr’s Index, Hausner’s Ratio as well as an angle of repose were used to test the flowability of the powder blend. The liquid-solid compacts were produced by direct compression method and were evaluated for tests such as weight variation, drug content, hardness, thickness, friability, wetting time, disintegration time as well as the in vitro dissolution studies.Results: The results of the preformulation studies of liquisolid compacts showed acceptable flow properties. The results of FTIR and DSC studies showed that there is no drug-excipient interactions. The different R values and concentrations were found to have a marked effect on the dissolution profile. Formulations with higher carrier: coating ratio (R-value) and lower drug concentrations displayed a better dissolution profile. The percentage of drug release of F3 with an R-value of 20 and a drug concentration of 10% was found to be 88.11% when compared to the conventional marketed tablet which released only 44.07% at the end of 2 h.Conclusion: From this research, it is inferred that liquid-solid technique is a promising and effective approach that can be used to enhance the dissolution rate of cinnarizine.


Cinnarizine is an anti-histaminic drug and is mainly used to treat symptoms accompanying motion sickness like vomiting and dizziness. It has low and variable bioavailability due to its low water solubility. Cinnarizine (weakly basic drug) is formulated as raft forming chewable Tablets to allow its complete dissolution at the stomach to be absorbed at the upper part of small intestine. Raft forming chewable Tablets are formulated by direct compression method using sodium alginate or pectin as raft forming agents. The prepared Tablets were evaluated for their pre and post- compression parameters and they have shown desirable results regarding evaluation of hardness, thickness, % friability, weight variation, content uniformity, raft strength, weight and volume, in addition to in-vitro drug release. Out of all the prepared formulas F1 selected as the optimum formula with 488.1mg raft strength and 92.34% drug release after 24hrs that is promising for the formulation of the raft system.


2015 ◽  
Vol 50 (4) ◽  
pp. 251-256 ◽  
Author(s):  
M Jaman ◽  
AA Chowdhury ◽  
AA Rana ◽  
SM Masum ◽  
T Ferdous ◽  
...  

The in vitro evaluation of the physical characteristics of the pharmaceutical products ensures their quality as well as bioavailability and impart optimum therapeutic activity. Ciprofloxacin HCl, a widely used antibiotic to treat different types of bacterial infections, was chosen for this in vitro comparative study of different pharmaceutical company. The present study compared the content uniformity, weight variation, hardness, friability, thickness, diameter, disintegration and dissolution ability of five brands of ciprofloxacin HCl tablets marketed in Bangladesh to confirm whether they follow USP guidelines. All five brands of ciprofloxacin HCl tested meet the specification of the USP for content uniformity, weight variation, hardness, friability, thickness, diameter, disintegration and dissolution. The amount of active ciprofloxacin HCl varies from 244.46 mg to 248.46 mg among the products. The average hardness and friability of the products varies 73.9 N to 77.6 N and 0.013% to 0.031%, respectively. All the brands had shown disintegration time 5 to 8 minutes while they showed 80 to 95 % release of active ingredient within 30 minutes in dissolution testing. This may confirm the absorption of the drug from gastrointestinal tract for optimum therapeutic effect.Bangladesh J. Sci. Ind. Res. 50(4), 251-256, 2015


Sign in / Sign up

Export Citation Format

Share Document