MiR-485-5p as a potential biomarker and tumor suppressor in human colorectal cancer

2020 ◽  
Vol 14 (3) ◽  
pp. 239-248 ◽  
Author(s):  
Yuqin Pan ◽  
Jian Qin ◽  
Huiling Sun ◽  
Tao Xu ◽  
Shukui Wang ◽  
...  

Aim: To investigate the role of miR-485-5p in colorectal cancer (CRC). Methodology: The level of miR-485-5p in serum and cell lines were measured by quantitative real-time polymerase chain reaction, and analyzed the diagnostic and prognostic value. Additionally, the biological effect of miR-485-5p on CRC cells was also explored in vitro. Results: The receiver operating characteristic (ROC) curves analysis revealed that miR-485-5p was a diagnostic candidate. Kaplan-Meier analyses demonstrated that patients with low serum miR-485-5p had shorter overall survival. In addition, the result of cox regression model indicated that miR-485-5p was not an independent risk factor for progression. Functional study revealed that overexpression of miR-485-5p could inhibit CRC cell proliferation, invasion and facilitates cell apoptosis. Conclusion: Our study revealed that miR-485-5p was a tumor suppressor and it could serve as a potential prognostic biomarker in CRC.

2020 ◽  
Vol 14 (12) ◽  
pp. 1127-1137
Author(s):  
Tong-Tong Zhang ◽  
Yi-Qing Zhu ◽  
Hong-Qing Cai ◽  
Jun-Wen Zheng ◽  
Jia-Jie Hao ◽  
...  

Aim: This study aimed to develop an effective risk predictor for patients with stage II and III colorectal cancer (CRC). Materials & methods: The prognostic value of p-mTOR (Ser2448) levels was analyzed using Kaplan–Meier survival analysis and Cox regression analysis. Results: The levels of p-mTOR were increased in CRC specimens and significantly correlated with poor prognosis in patients with stage II and III CRC. Notably, the p-mTOR level was an independent poor prognostic factor for disease-free survival and overall survival in stage II CRC. Conclusion: Aberrant mTOR activation was significantly associated with the risk of recurrence or death in patients with stage II and III CRC, thus this activated proteins that may serve as a potential biomarker for high-risk CRC.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 269 ◽  
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Ching-Kuo Yang ◽  
Wei-Hong Cheng ◽  
David T.W. Tzeng ◽  
Kuang-Tai Kuo ◽  
...  

Background: Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality in both sexes globally. This is not unconnected with the heterogeneity and plasticity of CRC stem cells (CRC-SCs) which stealthily exploit the niche-related and (epi)genetic factors to facilitate metastasis, chemoresistance, tumor recurrence, and disease progression. Despite the accumulating evidence of the role of dysregulated microRNAs in malignancies, the therapeutic efficacy of pharmacological-targeting of CRC-SC-associated microRNAs is relatively under-explored. Experimental approach: In this present study, we employed relatively new bioinformatics approaches, analyses of microarray data, Western blot, real-time polymerase chain reaction (RT-PCR), and functional assays to show that hsa-miR-324-5p expression is significantly suppressed in CRC cells, and inversely correlates with the aberrant expression of SOD2. Results: This converse hsa-miR-324-5p/SOD2 relationship is associated with enhanced oncogenicity, which is effectively inhibited by 4-acetylantroquinonol B (4-AAQB), as evidenced by inhibited cell viability and proliferation, as well as attenuated migration, invasion, and clonogenicity in 4-AAQB-treated DLD1 and HCT116 cells. Interestingly, 4-AAQB did not affect the viability and proliferation of normal colon cells. We also showed that 4-AAQB-induced re-expression of hsa-miR-324-5p, akin to short-interfering RNA, reduced SOD2 expression, correlates with the concurrent down-regulation of SOD2, N-cadherin, vimentin, c-Myc, and BcL-xL2, with concomitant up-regulation of E-cadherin and BAX2 proteins. Enhanced expression of hsa-miR-324-5p in the CRC cells suppressed their tumorigenicity in vitro and in vivo. Additionally, 4-AAQB synergistically potentiates the FOLFOX (folinate (leucovorin), fluorouracil (5FU), and oxaliplatin) anticancer effect by eliciting the re-expression of SOD2-suppressed hsa-miR-324, and inhibiting SOD2-mediated tumorigenicity. Conclusion: Our findings highlight the pre-clinical anti-CSC efficacy of 4-AAQB, with or without FOLFOX in CRC, and suggest a potential novel therapeutic strategy for CRC patients.


2020 ◽  
Author(s):  
Zhaoyan Qiu ◽  
Ning Liang ◽  
Tao Sun ◽  
Hongyuan Xue ◽  
Tianyu Xie ◽  
...  

Abstract Background Dual-specificity phosphatase 9 (DUSP9) belongs to the dual-specificity protein phosphatase subfamily. Recently, increasing attention has been paid on the role of DUSP9 in a variety of cancers. However, its functional role in tumor development is still unclear, especially in colorectal cancer (CRC). Methods The functional role of DUSP9 in inhibiting the progression of CRC was verified both in vivo and in vitro using colony formation assay, EdU incorporation assay, wound healing assay, nude mice xenograft model, and et al. RNA-seq was performed to assess the gene expression profiling in SW480 cells with DUSP9 stable knockdown and shControl cells. Bisulfite sequencing (BSE) was performed to reveal methylation status of CpG island in promoter of DUSP9. Results DUSP9 was significantly down regulated in tumor tissues compared with peritumor tissues. Moreover, low DUSP9 expression in CRC was closely associated with tumor size, depth of invasion and advanced TNM stage, indicating that DUSP9 may be involved in the progression of CRC. Kaplan–Meier survival analysis showed that the overall survival (OS) and recurrence-free survival (RFS) of patients with low expression of DUSP9 were significantly shorter than that of patients with high expression of DUSP9. Functional study revealed that DUSP9 inhibited tumor migration, invasion and metastasis both in vitro and in vivo . Mechanistically, low expression of DUSP9 in CRC was caused by the upregulation of miR-1246 and hypermethylation status of CpG island in promoter of DUSP9. Conclusion Our findings demonstrate that DUSP9 plays a critical role in the progression of CRC and therapeutic intervention to increase the expression or activity of DUSP9 may be a potential target for CRC treatment in the future.


2017 ◽  
Vol 32 (2) ◽  
pp. 218-223 ◽  
Author(s):  
Xiangke Li ◽  
Feng Wang ◽  
Yan Sun ◽  
Qingxia Fan ◽  
Guangfei Cui

Background Long noncoding RNAs (lncRNAs) are emerging as key molecules in human cancer. In the present study, we explored the role of the lncRNA PANDAR in colorectal cancer (CRC). Methods The relative expression level of lncRNA PANDAR in CRC tissues and cell lines was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The associations between PANDAR expression and clinicopathological features of CRC patients were further analyzed. Kaplan-Meier survival analysis was performed to evaluate the value of PANDAR in the prognosis of CRC patients. Furthermore, the biological function of PANDAR on CRC cell growth, apoptosis and mobility was investigated through MTT, flow cytometry, transwell migration and invasion assays in vitro. Results The expression level of PANDAR was higher in CRC tissues and cells compared with adjacent nontumor tissues and normal colonic cell line NCM460. PANDAR expression was significantly correlated with local invasion, lymph node metastasis and TNM stage. Kaplan-Meier analysis showed that patients with high PANDAR expression had poorer overall survival than patients with low PANDAR expression. Multivariate Cox regression analysis indicated that PANDAR might be an independent prognostic factor for CRC patients. Furthermore, PANDAR knockdown significantly inhibited cell proliferation, cycle progression, migration and invasion of CRC in vitro. Conclusions Our results suggest that high expression of PANDAR was involved in CRC progression and could act as an independent biomarker for prognosis of CRC patients.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1038
Author(s):  
Michael Rose ◽  
Erik Noetzel ◽  
Jennifer Kistermann ◽  
Julian Eschenbruch ◽  
Sandra Rushrush ◽  
...  

This study aims at characterizing the role of the putative tumor suppressor ITIH5 in basal-type bladder cancers (BLCA). By sub-classifying TCGA BLCA data, we revealed predominant loss of ITIH5 expression in the basal/squamous-like (BASQ) subtype. ITIH5 expression inversely correlated with basal-type makers such as KRT6A and CD44. Interestingly, Kaplan–Meier analyses showed longer recurrence-free survival in combination with strong CD44 expression, which is thought to mediate ITIH-hyaluronan (HA) binding functions. In vitro, stable ITIH5 overexpression in two basal-type BLCA cell lines showing differential CD44 expression levels, i.e., with (SCaBER) and without squamous features (HT1376), demonstrated clear inhibition of cell and colony growth of BASQ-type SCaBER cells. ITIH5 further enhanced HA-associated cell-matrix attachment, indicated by altered size and number of focal adhesion sites resulting in reduced cell migration capacities. Transcriptomic analyses revealed enrichment of pathways and processes involved in ECM organization, differentiation and cell signaling. Finally, we provide evidence that ITIH5 increase sensitivity of SCaBER cells to chemotherapeutical agents (cisplatin and gemcitabine), whereas responsiveness of HT1376 cells was not affected by ITIH5 expression. Thus, we gain further insights into the putative role of ITIH5 as tumor suppressor highlighting an impact on drug response potentially via the HA-CD44 axis in BASQ-type BLCA.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dong Dong ◽  
Runshi Zhang ◽  
Jie Shao ◽  
Aimin Zhang ◽  
Yichao Wang ◽  
...  

Abstract Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC.


Author(s):  
Qianqian Yu ◽  
Wenhai Sun ◽  
Hui Hua ◽  
Yulian Chi ◽  
Xiaomin Liu ◽  
...  

Background: The incidence of thyroid cancer is increasing rapidly and there is an urgent need to explore novel therapeutic targets for thyroid cancer. MiR-140 has been reported to affect the progression of various cancers, which makes it possible to play a role in thyroid cancer. This study aimed to investigate the expression and role of miR-140 in thyroid cancer. Methods: The expression of miR-140 was investigated by reverse transcription-quantitative polymerase chain reaction (qRT-PCR) in thyroid cancer tissues and cell lines. The prognostic value of miR-140 in thyroid cancer was evaluated by Kaplan-Meier survival and Cox regression. Moreover, effects of miR-140 on cell proliferation, migration, and invasion of thyroid cancer were investigated by CCK-8 and Transwell assay. Results: MiR-140 was downregulated in thyroid cancer tissues and cells, which correlated with TNM stage and lymph node metastasis of patients. Patients with low miR-140 expression had a shorter survival time compared with that in patients with high miR-140 expression. Furthermore, miR-140 acts as an independent factor for the prognosis of thyroid cancer. Overexpression of miR-140 inhibited cell proliferation, migration, and invasion of thyroid cancer. Conclusion: MiR-140 can serve as a potential prognostic factor for patients with thyroid cancer and suppress the progression of thyroid cancer, which provides new insight for the therapeutic target for thyroid cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Shu Gong ◽  
Weijian Ye ◽  
Tiankai Liu ◽  
Shaofen Jian ◽  
Wenhua Liu

Aims. The prognosis of colorectal cancer (CRC) remains poor. This study aimed to develop and validate DNA methylation-based signature model to predict overall survival of CRC patients. Methods. The methylation array data of CRC patients were retrieved from The Cancer Genome Atlas (TCGA) database. These patients were divided into training and validation datasets. A risk score model was established based on Kaplan-Meier and multivariate Cox regression analysis of training cohort and tested in validation cohort. Results. Among total 14,626 DNA methylation candidate markers, we found that a three-DNA methylation signature (NR1H2, SCRIB, and UACA) was significantly associated with overall survival of CRC patients. Subgroup analysis indicated that this signature could predict overall survival of CRC patients regardless of age and gender. Conclusions. We established a prognostic model consisted of 3-DNA methylation sites, which could be used as potential biomarker to evaluate the prognosis of CRC patients.


2020 ◽  
Author(s):  
Hui Li ◽  
Shufen Zhao ◽  
Liwei Shen ◽  
Peige Wang ◽  
Shihai Liu ◽  
...  

Abstract Background: E2F2 is a member of the E2F family of transcription factors with important yet incompletely understood biological functions in cancer. In some cancer types, controversial tumor-promoting and tumor-suppressive roles of E2F2 have been reported. However, the biological role of E2F2 in gastric cancer (GC) remains to be determined. Methods: We analyzed E2F2 expression via multiple gene expression databases. The prognostic value of the E2F2 was determined by Kaplan-Meier Plotter and Cox regression. The correlations between E2F2 and cancer immune infiltrates were investigated via Tumor Immune Estimation Resource (TIMER). The functions and pathways of E2F2 and its 50 frequently changed genes closely associated with the family members were analyzed using Database for Annotation, Visualization, and Integrated Discovery (DAVID) software. We used immunohistochemistry (IHC), quantitative real-time PCR (qPCR) and western blot to verify the expression level of E2F2 in GC and further studied the effects of E2F2 on PI3K/Akt/mTOR activity; GC cell autophagy, migration, and invasion through wound healing assays, transwell assays, Western blotting, and transmission electron microscopy.Results: We observed that compared with normal gastric tissues/cells, E2F2 is highly expressed in gastric cancer tissues and cells in both the public datasets and in our experimental verification. High E2F2 expression was associated with poorer overall survival (OS). Moreover, E2F2 expression showed strong correlations with diverse immune marker sets in GC. Moreover, E2F2 overexpression promoted GC cell migration and invasion in vitro by inactivating PI3K/Akt/mTOR-mediated autophagy. Conversely, E2F2 inhibition suppressed GC cell migration and invasion in vitro by activating PI3K/Akt/mTOR-mediated autophagy.Conclusions: In conclusion, this study provides multi-level evidence for the importance of E2F2 in gastric carcinogenesis and its potential as a biomarker in GC. We demonstrated that E2F2 is overexpressed in GC and that high E2F2 expression is associated with aggressive tumor features and poorer patient prognosis. Further, our results suggest a potential novel immune regulatory role of E2F2 in tumor immunity. Functionally, we discovered a new role of E2F2 in regulating PI3K/Akt/mTOR-mediated autophagy and the downstream processes of cell migration and invasion. Our results could potentially reveal new targets and strategies for GC diagnosis and treatment.


2020 ◽  
Author(s):  
Ran Cui ◽  
Ludi Yang ◽  
Yiwei Wang ◽  
Ming Zhong ◽  
Minhao Yu ◽  
...  

Abstract Background: Colorectal cancer is one of the most common malignant tumors worldwide. ASXL2 is an enhancer of trithorax and polycomb gene, which have been proved to act in many tumor types. The role of ASXL2 in the occurrence and development of tumors have been extensively studied in recent years. However the relationship between ASXL2 and the prognosis of CRC is still unclear.Methods: In this study, quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis and immunohistochemistry (IHC) were used to examine the expression of ASXL2 in CRC tissues. Cells were transfected with siRNAs or lentivirus to regulate the expression of ASXL2. The effects of ASXL2 on proliferation of CRC cells were determined by CCK8 assay.Results: This study demonstrated that ASXL2 was significantly more expressed in CRC specimens relative to the normal adjacent tissues. The upregulation of ASXL2 was related to advanced clinical stages. Patients who exhibited high expression levels of ASXL2 had poorer overall survival, whereas those with low expression of ASXL2 survived longer. Multivariate Cox regression analysis revealed ASXL2 expression could be considered as an independent prognostic factor for CRC. Inhibition or overexpression of ASXL2 markedly influenced the proliferation of CRC cells.Conclusion: These results showed that ASXL2 could induce cell proliferation which is associated with poor prognosis of CRC patients and might be a new therapeutic target for CRC.


Sign in / Sign up

Export Citation Format

Share Document