Phyto-fabricated Cr2O3 nanoparticle for multifunctional biomedical applications

Nanomedicine ◽  
2020 ◽  
Vol 15 (17) ◽  
pp. 1653-1669
Author(s):  
Hamza Elsayed Ahmed Mohamed ◽  
Shakeeb Afridi ◽  
Ali Talha Khalil ◽  
Tanzeel Zohra ◽  
Muhammad Ali ◽  
...  

Aim: The biosynthesis of chromium oxide nanoparticles (Cr2O3 NPs), using Hyphaene thebaica as a bioreductant, for assessment of their potential nanomedicinal applications. Materials & methods: Biosynthesized Cr2O3 NPs were characterized by x-ray diffraction, Fourier-transform infrared spectroscopy, energy dispersive x-ray spectroscopy, scanning and transmission electron microscopy, selected area electron diffraction, UV–Vis spectroscopy and ζ-potential measurement. In vitro assays were used to assess the biological properties of Cr2O3 NPs. Results: Nanoparticles with size approximately 25–38 nm were obtained with a characteristic Cr–O vibration at 417 cm-1. A broad spectrum antimicrobial potential and antioxidant nature is reported. Slight inhibition of polio virus and biocompatibility at low doses was observed. Conclusion: We conclude a multifunctional nature of biogenic Cr2O3 NPs.

2011 ◽  
Vol 9 (3) ◽  
pp. 415-421 ◽  
Author(s):  
Paula Jardim ◽  
Lidija Mancic ◽  
Bojan Marinkovic ◽  
Olivera Milosevic ◽  
Fernando Rizzo

AbstractNax−yHyTi2−xFexO4·nH2O nanosheets with lepidocrocite-like layered structure were produced through alkaline hydrothermal treatment at very low temperatures (130°C) from ilmenite sand. The crystal structure, morphology and optical properties were investigated by X-Ray diffraction, transmission electron microscopy, selected area electron diffraction, energy dispersive spectroscopy and UV-Vis spectroscopy. The product shows leaf-like nanosheet morphology with thickness <30 nm and lengths <1 µm. Three lepidocrocite-like titanates (Imm2 space group) with similar a and c lattice parameters but different interlayer distances (b/2) were identified. This appears to be the first preparation of lepidocrocite-like layered nanosheets by a simple, energy efficient (low temperature) and low cost (starting from mineral sand) procedure.


Nanomedicine ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 467-488 ◽  
Author(s):  
Hamza E Ahmed Mohamed ◽  
Shakeeb Afridi ◽  
Ali T Khalil ◽  
Muhammad Ali ◽  
Tanzeel Zohra ◽  
...  

Aim: To demonstrate synthesis of cerium oxide nanoparticles (CeO2 NPs) by a green method using Hyphaene thebaica, and investigate their therapeutic applications. Materials & methods: Structural, vibrational and luminescent properties were established using x-ray diffraction, Fourier transformed infrared spectroscopy, Raman spectroscopy, ultraviolet absorption spectroscopy, selected area electron diffraction, electron microscopy and photolumincence spectroscopy. Therapeutic properties were established using different in vitro assays. Results: CeO2 NPs were determined to be crystalline in nature with a grain size of approximately 14 nm. They had characteristic Ce–O vibration at 481 cm-1. Photoluminescence spectra revealed broad bands at 463 and 600 nm. ζ potential was recorded as -17.2 mV. Potent antimicrobial and antiviral properties with hemocompatibility were reported. Conclusion: Biosynthesized CeO2 NPs revealed multifunctional therapeutic properties.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1984 ◽  
Author(s):  
Afanasy V. Lunin ◽  
Anna A. Lizunova ◽  
Elizaveta N. Mochalova ◽  
Maria N. Yakovtseva ◽  
Vladimir R. Cherkasov ◽  
...  

The development of synthetic ways to fabricate nanosized materials with a well-defined shape, narrow-sized distribution, and high stability is of great importance to a rapidly developing area of nanotechnology. Here, we report an unusual reaction between amorphous two-line ferrihydrite and concentrated sulfuric or other mineral and organic acids. Instead of the expected dissolution, we observed the formation of new narrow-distributed brick-red nanoparticles (NPs) of hematite. Different acids produce similar nanoparticles according to scanning (SEM) and transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), infrared spectroscopy (FTIR), and energy-dispersive X-ray spectroscopy (EDX). The reaction demonstrates new possibilities for the synthesis of acid-resistant iron oxide nanoparticles and shows a novel pathway for the reaction of iron hydroxide with concentrated acids. The biomedical potential of the fabricated nanoparticles is demonstrated by the functionalization of the particles with polymers, fluorescent labels, and antibodies. Three different applications are demonstrated: i) specific targeting of the red blood cells, e.g., for red blood cell (RBC)-hitchhiking; ii) cancer cell targeting in vitro; iii) infrared ex vivo bioimaging. This novel synthesis route may be useful for the development of iron oxide materials for such specificity-demanding applications such as nanosensors, imaging, and therapy.


2009 ◽  
Vol 59 (12) ◽  
Author(s):  
Claudia Maria Simonescu ◽  
Valentin Serban Teodorescu ◽  
Camelia Capatina

This paper presents the obtaining of copper sulfide CuS (covelite) from Cu(CH3COO)2.H2O and thioacetamide (TAA) system. The reaction was conducted in presence or absence of sodium-bis(2-ethylhexyl) sulfosuccinate (Na-AOT). The effects of various reaction parameters on the size and on the shape of nanoparticles have been examined. CuS obtained was characterized by X ray diffraction, IR spectroscopy, TEM � transmission electron microscopy and SAED selected area electron diffraction. The influence of surfactant to the shape and size of CuS (covellite) nanocrystals was established. The size of the nanocrystals varied from 10-60 nm depending on the reaction conditions such as quantity of surfactant.


2011 ◽  
Vol 236-238 ◽  
pp. 1712-1716 ◽  
Author(s):  
Hai Tao Liu ◽  
Jun Dai ◽  
Jia Jia Zhang ◽  
Wei Dong Xiang

Bismuth selenide (Bi2Se3) hexagonal nanosheet crystals with uniform size were successfully prepared via a solvothermal method at 160°C for 22 h using bismuth trichloride(BiCl3) and selenium powder(Se) as raw materials, sodium bisulfite(NaHSO3) as a reducing agent, diethylene glycol(DEG) as solvent, and ammonia as pH regulator. Various techniques such as X-ray diffraction (XRD), field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), and selected area electron diffraction (SAED) were used to characterize the obtained products. Results show that the as-synthesized samples are pure Bi2Se3 hexagonal nanosheet crystals. A possible growth mechanism for Bi2Se3 hexagonal nanosheet crystals is also discussed based on the experiment.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


BioResources ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1548-1560
Author(s):  
Daniel Garcia-Bedoya ◽  
Luis P. Ramírez-Rodríguez ◽  
Jesús M. Quiroz-Castillo ◽  
Edgard Esquer-Miranda ◽  
Arnulfo Castellanos-Moreno

Algae constitute a diverse group that is useful in many biotechnological areas. In this paper, the usefulness of Caulerpa sertularioides methanol extract in the synthesis of ZnO and Zn(OH)2 nanoparticles was explored. This work had two main objectives: (1) to use the extract in the synthesis as an organic harmless complexing agent, and (2) to enhance a photocatalytic effect over AZO dyes in wastewater from fabric industries without adding nanomaterial to the environment due to its toxicity. Caulerpa extract performed the expected complexing action, and nanoparticles were formed in a size range from 45 to 69 nm. X-ray diffraction analysis (XRD), transmission electron microscopy (TEM) and UV-Vis spectroscopy were used to characterize the system. It was demonstrated that the nanoparticles were useful to photocatalyst AZO dyes in the water, while contained in tetraethylorthosilicate composites. These could be used in industrial wastewater and are expected to have no environmental consequences because the composites do not add nanoparticles to the water.


2014 ◽  
Vol 2 (4) ◽  
pp. 510-515
Author(s):  
Hala Moustafa Ahmed

The present study mainly focuses of combined action of Nepali hog plum as well as citrate synthesized silver nanoparticles (AgNPs) and Amikacin, as an antibiotic. The synergistic actions of citrate stabilized silver nanoparticles (AgNPs with chem) were compared with that of Nepali hog plum Choerospondia saxillaris (Lapsi) synthesized silver nanoparticles (AgNPs with plant), together with action of antibiotic onselected bacterial strains of Salmonella typhi. The synthesized AgNPs were characterized through UV-Vis spectroscopy, Transmission electronmicroscopy and X-ray diffraction technique. The size of the synthesized silver nanoparticles was measured by Transmission Electron Microscope (TEM) and X-ray diffraction (XRD).DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11127 Int J Appl Sci Biotechnol, Vol. 2(4): 510-515 


2019 ◽  
Vol 19 (1) ◽  
pp. 83-99 ◽  
Author(s):  
B. Yilmaz ◽  
E. T. Irmak ◽  
Y. Turhan ◽  
S. Doğan ◽  
M. Doğan ◽  
...  

AbstractThe aims of the present study were to synthesize the intercalated kaolinite samples with dimethylsulfoxide (DMSO), glutamic acid (GA), succinimide (SIM), cetylpyridiniumchloride (CPC), and hexadecyltrimethylammoniumchloride (HDTMA+); to characterize by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and to determine the hemocompatibility and the cytotoxic effects of the intercalated kaolinite nanoclays on human lymphocytes. It was found that the intercalation with DMSO did not cause any decrease in cell viability until its maximum concentration (500 µg/mL), however, the intercalation with SIM, CPC, and (HDTMA+) causd important decreases in lymphocyte viabilities. It was determined that no significant decrease was observed in protein content of the lymphocyte cells exposed to the kaolinite nanoclays except the ones intercalated with SIM. Furthermore, the pristine kaolinite nanoclays which were intercalated with DMSO, GA, and SIM exhibited high hemocompatibility and the nanoclays intercalated with CPC and (HDTMA+) were highly hemocompatibile for the amounts below 125 and 500 µg/mL, respectively. All the results of this work can serve for the human risk assesment of intercalated nanoclays.


Sign in / Sign up

Export Citation Format

Share Document