scholarly journals Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in regenerative endodontics

2021 ◽  
Vol 41 ◽  
pp. 233-244
Author(s):  
A Ivica ◽  
◽  
M Zehnder ◽  
FE Weber

Regenerative endodontic procedures are an alternative to conventional root-canal treatment and apexification. There are two different tissue engineering approaches that are currently followed, both aiming at the colonisation of the cleaned pulp space by pluripotent cells and subsequent pulp regeneration. Firstly, the transplantation of mesenchymal stem cells (MSCs), and secondly a cell-free strategy that relies on bioactive molecules to trigger the recruitment of the patient’s own cells. The first approach is hampered by costs and regulatory issues. Despite great initial enthusiasm with a clinically used cell-free approach that relies on induced bleeding into the pulp space, results have been revealed to be rather unpredictable, and mere repair rather than regeneration of the pulp-dentin complex is what is typically achieved. Moreover, the extent of further root development is variable, and the concept is limited to immature teeth. This article discusses a third possible way of regenerative endodontics that involves the application of MSC-derived exosomes. These are extracellular vesicles that contain proteins, lipids, and nucleic acids, reflecting the secretome of MSCs. Based on the first in vitro and in vivo studies, exosomes appear to be a potent tool to improve pulp regeneration. This narrative review aims to investigate the therapeutic use of human MSCs or dental pulp-derived exosomes in regenerative endodontics. Furthermore, the focus of this review is on targeting important questions that should be investigated in future in-vivo and clinical studies, such as the choice of scaffold material for exosome delivery into the pulp space.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Morgan T. Sutton ◽  
David Fletcher ◽  
Santosh K. Ghosh ◽  
Aaron Weinberg ◽  
Rolf van Heeckeren ◽  
...  

Cystic fibrosis (CF) is a genetic disease in which the battle between pulmonary infection and inflammation becomes the major cause of morbidity and mortality. We have previously shown that human MSCs (hMSCs) decrease inflammation and infection in thein vivomurine model of CF. The studies in this paper focus on the specificity of the hMSC antimicrobial effectiveness usingPseudomonas aeruginosa(gram negative bacteria) andStaphylococcus aureus(gram positive bacteria). Our studies show that hMSCs secrete bioactive molecules which are antimicrobialin vitroagainstPseudomonas aeruginosa, Staphylococcus aureus,andStreptococcus pneumonia, impacting the rate of bacterial growth and transition into colony forming units regardless of the pathogen. Further, we show that the hMSCs have the capacity to enhance antibiotic sensitivity, improving the capacity to kill bacteria. We present data which suggests that the antimicrobial effectiveness is associated with the capacity to slow bacterial growth and the ability of the hMSCs to secrete the antimicrobial peptide LL-37. Lastly, our studies demonstrate that the tissue origin of the hMSCs (bone marrow or adipose tissue derived), the presence of functional cystic fibrosis transmembrane conductance regulator (CFTR: human,Cftr: mouse) activity, and response to effector cytokines can impact both hMSC phenotype and antimicrobial potency and efficacy. These studies demonstrate, the unique capacity of the hMSCs to manage different pathogens and the significance of their phenotype in both the antimicrobial and antibiotic enhancing activities.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Raghubendra Singh Dagur ◽  
Moses New-Aaron ◽  
Murali Ganesan ◽  
Weimin Wang ◽  
Svetlana Romanova ◽  
...  

Background: Alcohol abuse is common in people living with HIV-1 and dramaticallyenhances the severity of HIV-induced liver damage by inducing oxidative stress and lysosomaldysfunction in the liver cells. We hypothesize that the increased release of extracellular vesicles(EVs) in hepatocytes and liver humanized mouse model is linked to lysosome dysfunction. Methods:The study was performed on primary human hepatocytes and human hepatoma RLWXP-GFP (Huh7.5 cells stably transfected with CYP2E1 and XPack-GFP) cells and validated on ethanol-fed liverhumanizedfumarylacetoacetate hydrolase (Fah)-/-, Rag2-/-, common cytokine receptor gamma chainknockout (FRG-KO) mice. Cells and mice were infected with HIV-1ADA virus. Results: We observedan increase in the secretion of EVs associated with a decrease in lysosomal activity and expressionof lysosomal-associated membrane protein 1. Next-generation RNA sequencing of primary humanhepatocytes revealed 63 differentially expressed genes, with 13 downregulated and 50 upregulatedgenes in the alcohol–HIV-treated group. Upstream regulator analysis of differentially expressedgenes through Ingenuity Pathway Analysis identified transcriptional regulators affecting downstreamgenes associated with increased oxidative stress, lysosomal associated disease, and function andEVs biogenesis. Our in vitro findings were corroborated by in vivo studies on human hepatocytetransplantedhumanized mice, indicating that intensive EVs’ generation by human hepatocytes andtheir secretion to serum was associated with increased oxidative stress and reduction in lysosomalactivities triggered by HIV infection and ethanol diet. Conclusion: HIV-and-ethanol-metabolisminducedEVs release is tightly controlled by lysosome status in hepatocytes and participates in thedevelopment of double-insult-induced liver injury.


2009 ◽  
Vol 21 (03) ◽  
pp. 149-155 ◽  
Author(s):  
Hsu-Wei Fang

Cartilage injuries may be caused by trauma, biomechanical imbalance, or degenerative changes of joint. Unfortunately, cartilage has limited capability to spontaneous repair once damaged and may lead to progressive damage and degeneration. Cartilage tissue-engineering techniques have emerged as the potential clinical strategies. An ideal tissue-engineering approach to cartilage repair should offer good integration into both the host cartilage and the subchondral bone. Cells, scaffolds, and growth factors make up the tissue engineering triad. One of the major challenges for cartilage tissue engineering is cell source and cell numbers. Due to the limitations of proliferation for mature chondrocytes, current studies have alternated to use stem cells as a potential source. In the recent years, a lot of novel biomaterials has been continuously developed and investigated in various in vitro and in vivo studies for cartilage tissue engineering. Moreover, stimulatory factors such as bioactive molecules have been explored to induce or enhance cartilage formation. Growth factors and other additives could be added into culture media in vitro, transferred into cells, or incorporated into scaffolds for in vivo delivery to promote cellular differentiation and tissue regeneration.Based on the current development of cartilage tissue engineering, there exist challenges to overcome. How to manipulate the interactions between cells, scaffold, and signals to achieve the moderation of implanted composite differentiate into moderate stem cells to differentiate into hyaline cartilage to perform the optimum physiological and biomechanical functions without negative side effects remains the target to pursue.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3088
Author(s):  
Mariana Matias ◽  
Jacinta O. Pinho ◽  
Maria João Penetra ◽  
Gonçalo Campos ◽  
Catarina Pinto Reis ◽  
...  

Melanoma is recognized as the most dangerous type of skin cancer, with high mortality and resistance to currently used treatments. To overcome the limitations of the available therapeutic options, the discovery and development of new, more effective, and safer therapies is required. In this review, the different research steps involved in the process of antimelanoma drug evaluation and selection are explored, including information regarding in silico, in vitro, and in vivo experiments, as well as clinical trial phases. Details are given about the most used cell lines and assays to perform both two- and three-dimensional in vitro screening of drug candidates towards melanoma. For in vivo studies, murine models are, undoubtedly, the most widely used for assessing the therapeutic potential of new compounds and to study the underlying mechanisms of action. Here, the main melanoma murine models are described as well as other animal species. A section is dedicated to ongoing clinical studies, demonstrating the wide interest and successful efforts devoted to melanoma therapy, in particular at advanced stages of the disease, and a final section includes some considerations regarding approval for marketing by regulatory agencies. Overall, considerable commitment is being directed to the continuous development of optimized experimental models, important for the understanding of melanoma biology and for the evaluation and validation of novel therapeutic strategies.


2021 ◽  
Vol 14 (12) ◽  
pp. 1248
Author(s):  
Muhammad Waleed Baig ◽  
Humaira Fatima ◽  
Nosheen Akhtar ◽  
Hidayat Hussain ◽  
Mohammad K. Okla ◽  
...  

Exploration of leads with therapeutic potential in inflammatory disorders is worth pursuing. In line with this, the isolated natural compound daturaolone from Datura innoxia Mill. was evaluated for its anti-inflammatory potential using in silico, in vitro and in vivo models. Daturaolone follows Lipinski’s drug-likeliness rule with a score of 0.33. Absorption, distribution, metabolism, excretion and toxicity prediction show strong plasma protein binding; gastrointestinal absorption (Caco-2 cells permeability = 34.6 nm/s); no blood–brain barrier penetration; CYP1A2, CYP2C19 and CYP3A4 metabolism; a major metabolic reaction, being aliphatic hydroxylation; no hERG inhibition; and non-carcinogenicity. Predicted molecular targets were mainly inflammatory mediators. Molecular docking depicted H-bonding interaction with nuclear factor kappa beta subunit (NF-κB), cyclooxygenase-2, 5-lipoxygenase, phospholipase A2, serotonin transporter, dopamine receptor D1 and 5-hydroxy tryptamine. Its cytotoxicity (IC50) value in normal lymphocytes was >20 µg/mL as compared to cancer cells (Huh7.5; 17.32 ± 1.43 µg/mL). Daturaolone significantly inhibited NF-κB and nitric oxide production with IC50 values of 1.2 ± 0.8 and 4.51 ± 0.92 µg/mL, respectively. It significantly reduced inflammatory paw edema (81.73 ± 3.16%), heat-induced pain (89.47 ± 9.01% antinociception) and stress-induced depression (68 ± 9.22 s immobility time in tail suspension test). This work suggests a possible anti-inflammatory role of daturaolone; however, detailed mechanistic studies are still necessary to corroborate and extrapolate the findings.


2020 ◽  
Author(s):  
Kui Wu ◽  
Nathan Yee ◽  
Sangeetha Srinivasan ◽  
Amir Mahmoodi ◽  
Michael Zakharian ◽  
...  

<div> <div> <div> <p>A desired goal of targeted cancer treatments is to achieve high tumor specificity with minimal side effects. Despite recent advances, this remains difficult to achieve in practice as most approaches rely on biomarkers or physiological differences between malignant and healthy tissue, and thus benefit only a subset of patients in need of treatment. To address this unmet need, we introduced a Click Activated Protodrugs Against Cancer (CAPAC) platform that enables targeted activation of drugs at a specific site in the body, i.e., a tumor. In contrast to antibodies (mAbs, ADCs) and other targeted approaches, the mechanism of action is based on in vivo click chemistry, and is thus independent of tumor biomarker expression or factors such as enzymatic activity, pH, or oxygen levels. The platform consists of a tetrazine-modified sodium hyaluronate-based biopolymer injected at a tumor site, followed by one or more doses of a trans-cyclooctene (TCO)- modified cytotoxic protodrug with attenuated activity administered systemically. The protodrug is captured locally by the biopolymer through an inverse electron-demand Diels-Alder reaction between tetrazine and TCO, followed by conversion to the active drug directly at the tumor site, thereby overcoming the systemic limitations of conventional chemotherapy or the need for specific biomarkers of traditional targeted therapy. Here, TCO-modified protodrugs of four prominent cytotoxics (doxorubicin, paclitaxel, etoposide and gemcitabine) are used, highlighting the modularity of the CAPAC platform. In vitro evaluation of cytotoxicity, solubility, stability and activation rendered the protodrug of doxorubicin, SQP33, as the most promising candidate for in vivo studies. Studies in rodents show that a single injection of the tetrazine-modified biopolymer, SQL70, efficiently captures SQP33 protodrug doses given at 10.8-times the maximum tolerated dose of conventional doxorubicin with greatly reduced systemic toxicity. </p> </div> </div> </div>


2016 ◽  
Vol 94 (7) ◽  
pp. 788-796 ◽  
Author(s):  
Bhawana Gupta ◽  
Sabyasachi Chakraborty ◽  
Soumya Saha ◽  
Sunita Gulabsingh Chandel ◽  
Atul Kumar Baranwal ◽  
...  

Shikonin possess a diverse spectrum of pharmacological properties in multiple therapeutic areas. However, the nociceptive effect of shikonin is not largely known. To investigate the antinociceptive potential of shikonin, panel of GPCRs, ion channels, and enzymes involved in pain pathogenesis were studied. To evaluate the translation of shikonin efficacy in vivo, it was tested in 3 established rat pain models. Our study reveals that shikonin has significant inhibitory effect on pan sodium channel/N1E115 and NaV1.7 channel with half maximal inhibitory concentration (IC50) value of 7.6 μmol/L and 6.4 μmol/L, respectively, in a cell-based assay. Shikonin exerted significant dose dependent antinociceptive activity at doses of 0.08%, 0.05%, and 0.02% w/v in pinch pain model. In mechanical hyperalgesia model, dose of 10 and 3 mg/kg (intraperitoneal) produced dose-dependent analgesia and showed 67% and 35% reversal of hyperalgesia respectively at 0.5 h. Following oral administration, it showed 39% reversal at 30 mg/kg dose. When tested in first phase of formalin induced pain, shikonin at 10 mg/kg dose inhibited paw flinching by ∼71%. In all studied preclinical models, analgesic effect was similar or better than standard analgesic drugs. The present study unveils the mechanistic role of shikonin on pain modulation, predominantly via sodium channel modulation, suggesting that shikonin could be developed as a potential pain blocker.


Blood ◽  
2021 ◽  
Author(s):  
Kaushik Das ◽  
Shiva Keshava ◽  
Shabbir A Ansari ◽  
Vijay Kumar Reddy Kondreddy ◽  
Charles Esmon ◽  
...  

Recombinant FVIIa (rFVIIa) is used as a hemostatic agent to treat bleeding disorders in hemophilia patients with inhibitors and other groups of patients. Our recent studies showed that FVIIa binds endothelial cell protein C receptor (EPCR) and induces protease-activated receptor 1 (PAR1)-mediated biased signaling. The importance of FVIIa-EPCR-PAR1-mediated signaling in hemostasis is unknown. In the present study, we show that FVIIa induces the release of extracellular vesicles (EVs) from endothelial cells both in vitro and in vivo. Silencing of EPCR or PAR1 in endothelial cells blocked the FVIIa-induced generation of EVs. Consistent with these data, FVIIa treatment enhanced the release of EVs from murine brain endothelial cells isolated from wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice. In vivo studies revealed that administration of FVIIa to wild-type, EPCR overexpressors, and PAR1-R46Q mutant mice, but not EPCR-deficient or PAR1-R41Q mutant mice, increase the number of circulating EVs. EVs released in response to FVIIa treatment exhibit enhanced procoagulant activity. Infusion of FVIIa-generated EVs and not control EVs to platelet-depleted mice increased thrombin generation at the site of injury and reduced blood loss. Administration of FVIIa-generated EVs or generation of EVs endogenously by administering FVIIa augmented the hemostatic effect of FVIIa. Overall, our data reveal that FVIIa treatment, through FVIIa-EPCR-PAR1 signaling, releases EVs from the endothelium into the circulation, and these EVs contribute to the hemostatic effect of FVIIa.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3390
Author(s):  
Barbara Wróblewska ◽  
Anna Kaliszewska-Suchodoła ◽  
Ewa Fuc ◽  
Lidia Hanna Markiewicz ◽  
Anna Maria Ogrodowczyk ◽  
...  

There is no effective therapy for milk allergy. The role of lactic acid bacteria (LAB) and probiotics in protection against allergy-related outcomes is still under investigation. The aim of the study was to evaluate the immunomodulative and therapeutic potential of yogurt drinks in cow’s milk allergy (CMA) management. We compared immunoreactivity of α-casein (α-CN), β-casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), and β-lactoglobulin (β-LG) in 27 yogurt drinks fermented with different basic yogurt cultures, or yogurt cultures enriched with Lactobacillus plantarum and/or Bifidobacterium lactis strains, by competitive ELISA assay. Drinks with the lowest antigenic potential were used as allergoids for CMA therapy. BALB/c mice were sensitized via intraperitoneal injection of α-CN + β-LG mixture with aluminum adjuvant, and gavaged with increasing doses of selected low-immunogenic drinks (YM—basic, or YM-LB—enriched with L. plantarum and B. lactis) to induce tolerance. Milk- or phosphate-buffered saline (PBS)-dosed mice served as controls. Compared to milk, the immunoreactivity of proteins in drinks increased or decreased, depending on the bacterial sets applied for fermentation. Only a few sets acted synergistically in reducing immunoreactivity. The selected low-immunogenic drinks stimulated allergic mice for profiling Th2 to Th1 response and acquire tolerance, and the effect was greater with YM-LB drink, which during long-lasting interventional feeding strongly increased the secretion of regulatory cytokines, i.e., IL-10 and TGF-β, and IgA and decreased IL-4, IgE, and anti-(α-CN + β-LG) IgG1. The studies revealed variations in the potency of yogurt bacteria to change allergenicity of milk proteins and the need for their strict selection to obtain a safe product for allergy sufferers. The YM-LB drink with reduced antigenic potential may be a source of allergoids used in the immunotherapy of IgE mediated CMA, but further clinical or volunteer studies are required.


Sign in / Sign up

Export Citation Format

Share Document