scholarly journals Design Analysis of Chassis used in Self-Propelled Onion Harvester using FEA Tool

Author(s):  
Kiran Gosavi

Onion farming is more commonly practiced for an irrigated crop, resulting in a high yield with large sized bulbs. Manual harvesting of an onion being meticulous requires a large amount of manpower as well as time. Thus, we have constructed and evaluated a self-propelled onion harvester which will have good performance in terms of productivity, fuel economy, less damage to crop and operator comfort. This paper is intended to discuss the results of the design and analysis of the chassis under the guidelines of the SAE TIFAN rulebook [1]. The chassis is designed using tool CATIA V5 followed by Finite element analysis (FEA) using ANSYS and the consequent results have been plotted and comparative results of old and modified chassis has proposed. During chassis designing and analysis, several factors are taken into account like material selection, strength, durability, boundary conditions, force distribution, induced stresses, optimum factor of safety, ergonomics and aesthetics. All the decisions for design are based on all pros and cons from testing and results of previous competitions.

Author(s):  
M. Anthony Bala Paul Raj ◽  
Raghavendran Pala Raviramachandran ◽  
N. Prakash ◽  
Bh. Chirudeep Reddy ◽  
V. Gopi Krishna

This paper describes the design and optimisation of rear wheel assembly for an all-terrain vehicle. The components of rear wheel assembly are designed with an optimised design intent with light weight material selection. The designed assembly is then discretised using finite element modelling through Hexa-dominant 3D mesh. The upright knuckle and the hub are assessed for their integrity check and the performance of full assembly is verified through simulation. From the post-processed stress results, factor of safety for the designed parts is presented. The presented work can be expanded to optimise the upright and the hub based the resolved gradient stress plots from the finite element analysis.


Author(s):  
Hugo Cardoso ◽  
Marco Guimarães ◽  
Lígia Lopes ◽  
Jorge Lino Alves

The footwear industry has been experiencing a rapid growth with a constant demand for new and comfortable models of footwear by its consumers. In response to this challenge, a sole with innovative cushioning system, dedicated to a casual segment of sports shoes and aimed at the female audience, was designed. This work reports the shoe sole design process and the study of its behavior under the action of loads equivalent to the human walk. The initial study of the foot and its role in the biomechanics of gait allowed identifying the regions that suffer the most pressure and need more cushioning. Based on that, the selected concept uses a system whose cushioning would be provided by the compression of the sole structure on the most affected areas of the foot during gait. The work focused on the bi- and three-dimensional design of the sole and cushioning system, using 3D scanners, 3D modeling and rendering software, and finite element analysis. In terms of material selection, through the application of loads to the heel and toe sole parts, simulating the human walk, and the use of different types of natural rubber and styrene-butadiene rubber materials, the von Mises stresses and the sample surfaces displacement were analyzed so that it was possible to suggest the most adequate materials and possible design changes. Samples with three rubber mixtures were produced and evaluated through impact tests. It was possible to verify that the most suitable rubber for the shoe sole would be the one that presented low rigidity and high yield strength. Ethylene vinyl acetate was also proposed as a shoe material, taking into account its low density. From the impact tests, it was concluded that the material with a better commitment between the damping and resilience properties is a natural rubber polymer-based mixture that was selected for the industrial production.


2019 ◽  
Vol 9 (23) ◽  
pp. 5258
Author(s):  
Fang Wang ◽  
Mian Wu ◽  
Genqi Tian ◽  
Zhe Jiang ◽  
Shun Zhang ◽  
...  

A flat cover of an adjustable ballast tank made of high-strength maraging steel used in deep-sea submersibles collapsed during the loading process of external pressure in the high-pressure chamber. The pressure was high, which was the trigger of the collapse, but still considerably below the design limit of the adjustable ballast tank. The failure may have been caused by material properties that may be defective, the possible stress concentration resulting from design/processing, or inappropriate installation method. The present paper focuses on the visual inspections of the material inhomogeneity, ultimate cause of the collapse of the flat cover in pressure testing, and finite element analysis. Special attention is paid to the toughness characteristics of the material. The present study demonstrates the importance of material selection for engineering components based on the comprehensive properties of the materials.


2021 ◽  
Author(s):  
R. M. Farizuan ◽  
A. R. Irfan ◽  
H. Radhwan ◽  
Shafeeq Ahmad Shamim Ahmad ◽  
Khoo Kin Fai ◽  
...  

2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Sachin Sunil Kelkar ◽  
Puneet Gautam ◽  
Shubham Sahai ◽  
Prajwal Sanjay Agrawal ◽  
R. Manoharan

AbstractThis study explains a coherent flow for designing, manufacturing, analyzing, and testing a tunable anti-roll bar system for a formula student racecar. The design process starts with the analytical calculation for roll stiffness using constraining parameters such as CG (Center of Gravity) height, total mass, and weight distribution in conjunction with suspension geometry. Then, the material selection for the design i.e. Aluminum 7075 T6 is made based on parameters such as density and modulus of rigidity. A MATLAB program is used to iterate deflection vs load for different stiffness and shaft diameter values. This is then checked with kinematic deflection values in Solidworks geometry. To validate with the material deflection, finite element analysis is performed on ANSYS workbench. Manufacturing accuracy for the job is checked using both static analysis in lab settings and using sensors on vehicles during on-track testing. The error percentage is found to be 4% between the target stiffness and the one obtained from static testing. Parameters such as moment arm length, shaft diameter and length, and deflection were determined and validated. This paper shows the importance of an anti-roll bar device to tune the roll stiffness of the car without interfering with the ride stiffness.


1991 ◽  
Vol 113 (3) ◽  
pp. 258-262 ◽  
Author(s):  
J. G. Stack ◽  
M. S. Acarlar

The reliability and life of an Optical Data Link transmitter are inversely related to the temperature of the LED. It is therefore critical to have efficient packaging from the point of view of thermal management. For the ODL® 200H devices, it is also necessary to ensure that all package seals remain hermetic throughout the stringent military temperature range requirements of −65 to +150°C. For these devices, finite element analysis was used to study both the thermal paths due to LED power dissipation and the thermally induced stresses in the hermetic joints due to ambient temperature changes


2008 ◽  
Vol 59 ◽  
pp. 299-303
Author(s):  
K. Mergia ◽  
Marco Grattarola ◽  
S. Messoloras ◽  
Carlo Gualco ◽  
Michael Hofmann

In plasma facing components (PFC) for nuclear fusion reactors tungsten or carbon based tiles need to be cooled through a heat sink. The joint between the PFC and the heat sink can be realized using a brazing process through the employment of compliant layer of either a low yield material, like copper, or a high yield material, like molybdenum. Experimental verification of the induced stresses during the brazing process is of vital importance. Strains and residual stresses have been measured in Mo/CuCrZr brazed tiles using neutron diffraction. The strains and stresses were measured in Mo tile along the weld direction and at different distances from it. The experimental results are compared with Finite Element Simulations.


2013 ◽  
Vol 391 ◽  
pp. 168-171
Author(s):  
Shou Jun Wang ◽  
Li Bo Yang

When it comes to the design of a wave-frame,empirical design is always adopted domestic,which is relatively conservative on stiffness and intensity and prefer a bigger factor of safety,thus these bring many uncertainties to the wave-frame.In order to reduce the negative effect to the wave system,the analysis of the wave-frame based on ANSYS is executed to have a knowledge of the weakness and the deformation of various parts.On the permise of ensuring the stiffness and intensity,with the method of grouping and using different profile steel,the purpose is to reduce the mass snd the negative effect brought by mass,and achieve the goal of optimization.


1992 ◽  
Vol 29 (6) ◽  
pp. 971-988 ◽  
Author(s):  
Z. Chen ◽  
N. R. Morgenstern ◽  
D. H. Chan

The mechanism of progressive failure is well understood as one which involves nonuniform straining of a strain-weakening material. Traditional limit equilibrium analysis cannot be used alone to obtain a rational solution for progressive failure problems because the deformation of the structure must be taken into account in the analysis. The failure of the Carsington Dam during construction in 1984 has been attributed to progressive failure of the underlying yellow clay and the dam core materials. The dam was monitored extensively prior to failure, and an elaborate geotechnical investigation was undertaken after failure. The limit equilibrium analysis indicated that the factors of safety were over 1.4 using peak strength of intact clay material or 1.2 based on reduced strength accounting for preshearing of the yellow clay layer. Factors of safety were found to be less than unity if residual strengths were used. The actual factor of safety at failure was, of course, equal to one. By using the finite element analysis with strain-weakening models, the extent and degree of weakening along the potential slip surface were calculated. The calculated shear strength was then used in the limit equilibrium analysis, and the factor of safety was found to be 1.05, which is very close to the actual value of 1.0. More importantly, the mechanism of failure and the initiation and propagation of the shear zones were captured in the finite element analysis. It was also found that accounting explicitly for pore-water pressure effects using the effective stress approach in the finite element and limit equilibrium analyses provides more realistic simulations of the failure process of the structure than analyses based on total stresses. Key words : progressive failure, strain softening, finite element analysis, dams.


Sign in / Sign up

Export Citation Format

Share Document