Blockchain Based Bidding System

Author(s):  
Mr. C. K Srinivas

The E-auction, one of the most common e-commerce events, allows bidders to bid directly on the Internet. As with the sealed deal, additional transaction costs are needed with intermediaries, as the third party plays an essential role between buyers and sellers in helping to negotiate both during the auction. In fact, it never confirms that a third party is trustworthy. To solve the problems, we propose the low transaction cost blockchain technology which is used to build the public bid and sealed bid smart contract. The smart contract consists of the Auctioneer address, the start time for the auction, the deadline, the current winner's address, and the current highest price. The project demonstrates the bidding framework with blockchain technology. This bidding application prepared by using Advanced Encryption Standard(AES) Algorithm. This algorithm contains AES cipher specifiers the number of repetitions of transformation rounds, that converts the input called the plain text, then into the final output called cipher text.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Honglei Li ◽  
Weilian Xue

e-Auction improves the efficiency of bid transaction. However, the protection of bidders’ privacy, transaction fairness and verifiability, transaction data security, high cost of third-party auction center, and other issues have attracted more attention. According to the transaction process and basic principles of the sealed auction, we explored the problems existing in the current sealed-bid e-auction schemes. Based on the blockchain technology, we proposed a sealed-bid e-auction scheme with smart contract technology, Bulletproofs zero-knowledge proof protocols, and Pedersen commitment algorithm. The proposed scheme constructed an auction mechanism without the third-party auctioneer so as to restrict the behaviors of auction parties for the sake of auction security, reliability, fairness, and privacy protection. Compared with the related sealed e-auction schemes based on blockchain technologies in six metrics, we conducted the experiment to show that the proposed scheme protected the bid information from leakage well and successfully verified the winning bid price and the related bidder by all transaction participants without the third-party auctioneer.


2019 ◽  
Vol 5 (1) ◽  
pp. 15-22
Author(s):  
Ardian Thresnantia Atmaja

The key objectives of this paper is to propose a design implementation of blockchain based on smart contract which have potential to change international mobile roaming business model by eliminating third-party data clearing house (DCH). The analysis method used comparative analysis between current situation and target architecture of international mobile roaming business that commonly used by TOGAF Architecture Development Method. The purposed design of implementation has validated the business value by using Total Cost of Ownership (TCO) calculation. This paper applies the TOGAF approach in order to address architecture gap to evaluate by the enhancement capability that required from these three fundamental aspect which are Business, Technology and Information. With the blockchain smart contract solution able to eliminate the intermediaries Data Clearing House system, which impacted to the business model of international mobile roaming with no more intermediaries fee for call data record (CDR) processing and open up for online billing and settlement among parties. In conclusion the business value of blockchain implementation in the international mobile roaming has been measured using TCO comparison between current situation and target architecture that impacted cost reduction of operational platform is 19%. With this information and understanding the blockchain technology has significant benefit in the international mobile roaming business.


2021 ◽  
Vol 11 (9) ◽  
pp. 4011
Author(s):  
Dan Wang ◽  
Jindong Zhao ◽  
Chunxiao Mu

In the field of modern bidding, electronic bidding leads a new trend of development, convenience and efficiency and other significant advantages effectively promote the reform and innovation of China’s bidding field. Nowadays, most systems require a strong and trusted third party to guarantee the integrity and security of the system. However, with the development of blockchain technology and the rise of privacy protection, researchers has begun to emphasize the core concept of decentralization. This paper introduces a decentralized electronic bidding system based on blockchain and smart contract. The system uses blockchain to replace the traditional database and uses chaincode to process business logic. In data interaction, encryption techniques such as zero-knowledge proof based on graph isomorphism are used to improve privacy protection, which improves the anonymity of participants, the privacy of data transmission, and the traceability and verifiable of data. Compared with other electronic bidding systems, this system is more secure and efficient, and has the nature of anonymous operation, which fully protects the privacy information in the bidding process.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5307
Author(s):  
Ricardo Borges dos Santos ◽  
Nunzio Marco Torrisi ◽  
Rodrigo Palucci Pantoni

Every consumer’s buying decision at the supermarket influences food brands to make first party claims of sustainability and socially responsible farming methods on their agro-product labels. Fine wines are often subject to counterfeit along the supply chain to the consumer. This paper presents a method for efficient unrestricted publicity to third party certification (TPC) of plant agricultural products, starting at harvest, using smart contracts and blockchain tokens. The method is capable of providing economic incentives to the actors along the supply chain. A proof-of-concept using a modified Ethereum IGR token set of smart contracts using the ERC-1155 standard NFTs was deployed on the Rinkeby test net and evaluated. The main findings include (a) allowing immediate access to TPC by the public for any desired authority by using token smart contracts. (b) Food safety can be enhanced through TPC visible to consumers through mobile application and blockchain technology, thus reducing counterfeiting and green washing. (c) The framework is structured and maintained because participants obtain economical incentives thus leveraging it´s practical usage. In summary, this implementation of TPC broadcasting through tokens can improve transparency and sustainable conscientious consumer behaviour, thus enabling a more trustworthy supply chain transparency.


2021 ◽  
Vol 235 ◽  
pp. 03020
Author(s):  
Qian Liao ◽  
Mimi Shao

Features like the distributed ledger, consensus mechanism, asymmetric encryption technology, smart contract and Token of blockchain can lower transaction cost, enhance trust between customers and merchants, as well as eliminate false payment and consumer information leakage, problems which are common in current payment of cross-border E-Commerce platform. Based on the analysis of existing scholars, this paper studied two payment models: digital cash payment based on blockchain technology and the application of blockchain in third-party payment platform. Then the paper discussed the mechanism of blockchain in cross-border e-commerce payment platform, and creatively proposed a blockchain cross-border e-commerce payment platform, serving as reference and guidance for further development of blockchain technology in cross-border payment.1


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1484 ◽  
Author(s):  
Oluwakemi Christiana Abikoye ◽  
Ahmad Dokoro Haruna ◽  
Abdullahi Abubakar ◽  
Noah Oluwatobi Akande ◽  
Emmanuel Oluwatobi Asani

The wide acceptability of Advanced Encryption Standard (AES) as the most efficient of all of the symmetric cryptographic techniques has further opened it up to more attacks. Efforts that were aimed at securing information while using AES is still being undermined by the activities of attackers This has further necessitated the need for researchers to come up with ways of enhancing the strength of AES. This article presents an enhanced AES algorithm that was achieved by modifying its SubBytes and ShiftRows transformations. The SubBytes transformation is modified to be round key dependent, while the ShiftRows transformation is randomized. The rationale behind the modification is to make the two transformations round key dependent, so that a single bit change in the key will produce a significant change in the cipher text. The conventional and modified AES algorithms are both implemented and evaluated in terms avalanche effect and execution time. The modified AES algorithm achieved an avalanche effect of 57.81% as compared to 50.78 recorded with the conventional AES. However, with 16, 32, 64, and 128 plain text bytes, the modified AES recorded an execution time of 0.18, 0.31, 0.46, and 0.59 ms, respectively. This is slightly higher than the results obtained with the conventional AES. Though a slightly higher execution time in milliseconds was recorded with the modified AES, the improved encryption and decryption strength via the avalanche effects measured is a desirable feat.


2018 ◽  
Vol 7 (3.1) ◽  
pp. 128
Author(s):  
Selvam L ◽  
Arokia Renjit J

Recent security incidents on public cloud data storage had raised concerns on cloud data security. Development in the hacking area has risen in the past few years. Due to this, Cyber Security is needed which plays an important role to cover the secret information. Currently, the attack of challenging channel is both the symmetric as well as the asymmetric encryption algorithm. Since, in both criteria the secret key has to be transmitting through a security challenging channel. For this many techniques have been put forward. The Main focus is on the vulnerabilities of the private keys while hoarded in different places for the fast utilization of the round key of the AES algorithm. In the view of the hackers, extracting the private key is nearly as same as obtaining the plain text itself. So, the honey encryption technique is used to futile the attacker by producing the fake key for each and every try of the Key puncher. An indication will be generated automatically to the storage manager when an attempt is made by the attacker. The Honey encryption is the best algorithm to overcome the drawbacks of the AES algorithm but it has some time constraints which are also eliminated here. Thus, eliminating the Brute Force Attack and providing a secure system for storing the secret key.  


2019 ◽  
Vol 8 (4) ◽  
pp. 5795-5802

Blockchain Technology is one of the most popular technologies of present days. This technology has the capability to eliminate the requirement of third party to validate the transactions over the Peer-to-Peer network. Due to various features of Blockchain like smart contract, consensus mechanism, network transactions are completed securely, efficiently and timely. This technology is very useful in many areas including medical, IoT, e-Governance services, smart cities, taxation, supply chain, banking etc. In this paper, we discuss the Blockchain Technology in detail, its data structure, open source platform like Ethereum and Hyperledger, technical aspects of this technology, possible applications of this technology, challenges and limitations in adaptation of this technology.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 422 ◽  
Author(s):  
Raylin Tso ◽  
Zi-Yuan Liu ◽  
Jen-Ho Hsiao

Traditional voting and bidding systems largely rely on paperwork and human resources throughout the voting process, which can incur high costs in terms of both time and money. Electronic voting and electronic bidding systems can be used to reduce costs, and many new systems have been introduced. However, most systems require a powerful and trusted third party to guarantee system integrity and security. With developments in blockchain technology, research has begun to highlight the core concept of decentralization. In this study, we introduce the first decentralized electronic voting and bidding systems based on a blockchain and smart contract. We also use cryptographic techniques such as oblivious transfer and homomorphic encryptions to improve privacy protection. Our proposed systems allow voters and bidders to participate in the opening phase and improve participant anonymity, the privacy of data transmission, and data reliability and verifiability. Moreover, compared with other electronic voting and bidding systems, our systems are safer and more efficient.


2019 ◽  
Vol 9 (17) ◽  
pp. 3602 ◽  
Author(s):  
Lei Hang ◽  
Do-Hyeun Kim

Recently, technology startups have leveraged the potential of blockchain-based technologies to govern institutions or interpersonal trust by enforcing signed treaties among different individuals in a decentralized environment. However, it is going to be hard enough convincing that the blockchain technology could completely replace the trust among trading partners in the sharing economy as sharing services always operate in a highly dynamic environment. With the rapid expanding of the rental market, the sharing economy faces more and more severe challenges in the form of regulatory uncertainty and concerns about abuses. This paper proposes an enhanced decentralized sharing economy service using the service level agreement (SLA), which documents the services the provider will furnish and defines the service standards the provider is obligated to meet. The SLA specifications are defined as the smart contract, which facilitates multi-user collaboration and automates the process with no involvement of the third party. To demonstrate the usability of the proposed solution in the sharing economy, a notebook sharing case study is implemented using the Hyperledger Fabric. The functionalities of the smart contract are tested using the Hyperledger Composer. Moreover, the efficiency of the designed approach is demonstrated through a series of experimental tests using different performance metrics.


Sign in / Sign up

Export Citation Format

Share Document