scholarly journals House Price Prediction Using Linear Regression

Author(s):  
Samkit Saraf

Index Terms: Regression model, House price prediction, machine learning, housing market, Arima model, artificial neural network, support vector machine, random forest, dataset.

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Tuan Vu Dinh ◽  
Hieu Nguyen ◽  
Xuan-Linh Tran ◽  
Nhat-Duc Hoang

Soil erosion induced by rainfall is a critical problem in many regions in the world, particularly in tropical areas where the annual rainfall amount often exceeds 2000 mm. Predicting soil erosion is a challenging task, subjecting to variation of soil characteristics, slope, vegetation cover, land management, and weather condition. Conventional models based on the mechanism of soil erosion processes generally provide good results but are time-consuming due to calibration and validation. The goal of this study is to develop a machine learning model based on support vector machine (SVM) for soil erosion prediction. The SVM serves as the main prediction machinery establishing a nonlinear function that maps considered influencing factors to accurate predictions. In addition, in order to improve the accuracy of the model, the history-based adaptive differential evolution with linear population size reduction and population-wide inertia term (L-SHADE-PWI) is employed to find an optimal set of parameters for SVM. Thus, the proposed method, named L-SHADE-PWI-SVM, is an integration of machine learning and metaheuristic optimization. For the purpose of training and testing the method, a dataset consisting of 236 samples of soil erosion in Northwest Vietnam is collected with 10 influencing factors. The training set includes 90% of the original dataset; the rest of the dataset is reserved for assessing the generalization capability of the model. The experimental results indicate that the newly developed L-SHADE-PWI-SVM method is a competitive soil erosion predictor with superior performance statistics. Most importantly, L-SHADE-PWI-SVM can achieve a high classification accuracy rate of 92%, which is much better than that of backpropagation artificial neural network (87%) and radial basis function artificial neural network (78%).


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257069
Author(s):  
Jae-Geum Shim ◽  
Kyoung-Ho Ryu ◽  
Sung Hyun Lee ◽  
Eun-Ah Cho ◽  
Sungho Lee ◽  
...  

Objective To construct a prediction model for optimal tracheal tube depth in pediatric patients using machine learning. Methods Pediatric patients aged <7 years who received post-operative ventilation after undergoing surgery between January 2015 and December 2018 were investigated in this retrospective study. The optimal location of the tracheal tube was defined as the median of the distance between the upper margin of the first thoracic(T1) vertebral body and the lower margin of the third thoracic(T3) vertebral body. We applied four machine learning models: random forest, elastic net, support vector machine, and artificial neural network and compared their prediction accuracy to three formula-based methods, which were based on age, height, and tracheal tube internal diameter(ID). Results For each method, the percentage with optimal tracheal tube depth predictions in the test set was calculated as follows: 79.0 (95% confidence interval [CI], 73.5 to 83.6) for random forest, 77.4 (95% CI, 71.8 to 82.2; P = 0.719) for elastic net, 77.0 (95% CI, 71.4 to 81.8; P = 0.486) for support vector machine, 76.6 (95% CI, 71.0 to 81.5; P = 1.0) for artificial neural network, 66.9 (95% CI, 60.9 to 72.5; P < 0.001) for the age-based formula, 58.5 (95% CI, 52.3 to 64.4; P< 0.001) for the tube ID-based formula, and 44.4 (95% CI, 38.3 to 50.6; P < 0.001) for the height-based formula. Conclusions In this study, the machine learning models predicted the optimal tracheal tube tip location for pediatric patients more accurately than the formula-based methods. Machine learning models using biometric variables may help clinicians make decisions regarding optimal tracheal tube depth in pediatric patients.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 1085
Author(s):  
Dr P. Vidya Sagar ◽  
Dr Nageswara Rao Moparthi ◽  
Venkata Naresh Mandhala

Precisely assessing programming exertion is likely the greatest test confronting for programming engineers. Assessments done at the prop-osition arrange has high level of incorrectness, where prerequisites for the degree are not characterized to the most reduced subtle elements, but rather as the venture advances and necessities are explained, exactness and certainty on appraise increments. It is vital to pick the correct programming exertion estimation systems for the forecast of programming exertion. Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been utilized on guarantee dataset for forecast of programming exertion in this article.  


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2119
Author(s):  
Victor Flores ◽  
Claudio Leiva

The copper mining industry is increasingly using artificial intelligence methods to improve copper production processes. Recent studies reveal the use of algorithms, such as Artificial Neural Network, Support Vector Machine, and Random Forest, among others, to develop models for predicting product quality. Other studies compare the predictive models developed with these machine learning algorithms in the mining industry as a whole. However, not many copper mining studies published compare the results of machine learning techniques for copper recovery prediction. This study makes a detailed comparison between three models for predicting copper recovery by leaching, using four datasets resulting from mining operations in Northern Chile. The algorithms used for developing the models were Random Forest, Support Vector Machine, and Artificial Neural Network. To validate these models, four indicators or values of merit were used: accuracy (acc), precision (p), recall (r), and Matthew’s correlation coefficient (mcc). This paper describes the dataset preparation and the refinement of the threshold values used for the predictive variable most influential on the class (the copper recovery). Results show both a precision over 98.50% and also the model with the best behavior between the predicted and the real values. Finally, the obtained models have the following mean values: acc = 0.943, p = 88.47, r = 0.995, and mcc = 0.232. These values are highly competitive when compared with those obtained in similar studies using other approaches in the context.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258788
Author(s):  
Sarra Ayouni ◽  
Fahima Hajjej ◽  
Mohamed Maddeh ◽  
Shaha Al-Otaibi

The educational research is increasingly emphasizing the potential of student engagement and its impact on performance, retention and persistence. This construct has emerged as an important paradigm in the higher education field for many decades. However, evaluating and predicting the student’s engagement level in an online environment remains a challenge. The purpose of this study is to suggest an intelligent predictive system that predicts the student’s engagement level and then provides the students with feedback to enhance their motivation and dedication. Three categories of students are defined depending on their engagement level (Not Engaged, Passively Engaged, and Actively Engaged). We applied three different machine-learning algorithms, namely Decision Tree, Support Vector Machine and Artificial Neural Network, to students’ activities recorded in Learning Management System reports. The results demonstrate that machine learning algorithms could predict the student’s engagement level. In addition, according to the performance metrics of the different algorithms, the Artificial Neural Network has a greater accuracy rate (85%) compared to the Support Vector Machine (80%) and Decision Tree (75%) classification techniques. Based on these results, the intelligent predictive system sends feedback to the students and alerts the instructor once a student’s engagement level decreases. The instructor can identify the students’ difficulties during the course and motivate them through e-mail reminders, course messages, or scheduling an online meeting.


2021 ◽  
Vol 9 (B) ◽  
pp. 1283-1289
Author(s):  
Jane Aurelia ◽  
Zuherman Rustam

BACKGROUND: Cancer is a major health problem not only in Indonesia but also throughout the world. Cancer is the growth and spread of abnormal cells that have distinctive characteristics, that if can no longer be controlled will usually cause death. The number of deaths due to cancer is generally caused by late diagnosis and inappropriate treatment. To reduce mortality from cancer, it is necessary to strive for early detection and monitoring of cancer in patients undergoing therapy. Convolutional neural networks (CNNs) as one of machine learning methods are designed to produce or process data from two dimensions that have a network tier and many applications carried out in the image. Moreover, support vector machines (SVMs) as a hypothetical space in the form of linear functions feature have high dimensions and trained algorithm based on optimization theory. AIM: In connection with the above, this paper discusses the role of the machine learning technique named a hybrid CNN-SVM. METHODS: The proposed method is used in the detection and monitoring of cancers by determining the classification of cancers in X-ray computed tomography (CT) patients’ images. Several types of cancer that used for determination in detection and monitoring of cancers diagnosis are also discussed in this paper, such as lung, liver, and breast cancer. RESULTS: From the discussion, the results show that the combining model of hybrid CNN-SVM has the best performance with 99.17% accuracy value. CONCLUSION: Therefore, it can be concluded that machine learning plays a very important role in the detection and management of cancer treatment through the determination of classification of cancers in X-ray CT patients’ images. As the proposed method can detect cancer cells with an effective mechanism of action so can has the potential to inhibit in the future studies with more extensive data materials and various diseases.


Sign in / Sign up

Export Citation Format

Share Document