scholarly journals Experimental Investigation on Waste Utilization of Steel Fiber and SCBA in Concrete with Partially Replacement of Cement

Author(s):  
Sudhir Kumar Jain

Abstract: In the present study the effect of Suarcane bagasse ash and steel Fiber on the strength of concrete is investigated. The addition of bagasse ash not only helps in reducing pollution but also leads to sustainable development of the country. From the literature it has been observed that bagasse ash significantly increases the strength of concrete and it can be used as a partial replacement of cement in the concrete. In these trial examination work concrete cubes, cylinders and beams of M-25 grade were casted and tested to inspect different properties of concrete like compressive strength, flexural strength and split tensile strength test. The test results shows that Sugarcane Bagasse Ash can be utilized for partial replacement of cement up to 10% by weight of cement without any major loss in strength. Keywords: Steel fibres, Cement and Compressive Strength, GGBS, Fly Ash, SFRC, Cement, , Split Tensile Strength

Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


2020 ◽  
Vol 4 (2) ◽  
pp. 284-289
Author(s):  
Dr.Muhammad Magana Aliyu Aliyu ◽  
Nuruddeen Muhammad Musa

The use of eggshells ash for partial cement replacement in concrete has been well established in earlier studies. The effect of such partial replacement of cement with an eggshell ash and Plastiment BV-40 was investigated in this. Tests including slump test, compressive strength test, splitting tensile strength test and concrete density test were carried out on concrete in which cement was partially replaced with 0%, 5%, 10%, 15%, 20%, and 25% eggshell ash and presented. The test results indicate that eggshell ash decreases the workability of concrete. Also, for the compressive strength at 5% content, after which there is  decrease in the compressive strength with increase in the ash content. Furthermore, eggshell ash is found to increase the concrete splitting tensile strength. It was concluded that eggshell ash has the potential of being utilized in concrete as partial replacement of cement.


This research work has been investigated the agriculture solid waste of sugarcane bagasse ash (SCBA) materials replacing Portland cement and produces the assured quality of concrete. The current research work for various mixes of experimental test results shows the higher compressive strength was 37.51MPa at 28-days, 38.10 MPa at 56-days, the best mix consisting of SCBA (wet sieving method) content up to 15% (by weight of binding materials) along with 1.5% of waste tin fibers and also an excellent improvement trend was noted in flexural rigidity of concrete to addition of tin fibers shows the higher bending stress for all mixes except reference as well as more than 15% of SCBA concrete at different curing days. However, this study focused on the indirect measurement of tensile strength in SCBA concrete obtained the higher split tensile strength was 3.75MPa at 28-days, 3.95MPa at 56-days. It is concluded based on the various test results for different curing days the optimum replacement level of SCBA up to 15% of Portland cement was fixed and achieve the target strength of M25 grade of Portland cement concrete at 28 days.


Author(s):  
Asfaw Mekonnen LAKEW ◽  
Mukhallad M. AL-MASHHADANI ◽  
Orhan CANPOLAT

This experimental work evaluated geopolymer concrete containing fly ash and slag by partial replacement of natural coarse aggregate (NCA) with recycled coarse aggregate (RCA) to manufacture environmental-friendly concrete. The proportion of recycled aggregates considered consists of 10%, 20%, 30%, and 40% of the total coarse aggregate amount. Also, a steel fiber ratio of 0.3% was utilized. The mechanical properties and abrasion resistance of fly ash/slag-based geopolymer concrete were then assessed. Majorly, the mechanical strength of the concrete samples decreased by the increase of RCA content. The geopolymer concrete with 40% RCA gave 28.3% lesser compressive strength and 24% lower splitting tensile strength than NCA concrete at one year. Also, the flexural strength of concrete specimens was reduced by 35% (from 5.34MPa to 3.5MPa) with the incorporation of 40% RCA. The incorporation of 30% RCA caused 23% and 22.6% reduction in compressive strength at 56 days and one year, respectively. The flexural and splitting tensile strength of the specimens was not significantly reduced (less than 10%) with the inclusion of a recycled coarse aggregate ratio of up to 30%. Furthermore, the abrasion wear thickness of every concrete sample was less than 1mm. RCA inclusion of 20% produced either insignificant reduction or better strength results compared to reference mixtures. As a result, it was considered that the combination of 0.3% steel fiber and 20% recycled coarse aggregate in fly ash/slag-based geopolymer concrete leads to an eco-friendly concrete mix with acceptable short and long-term engineering properties that would lead to sustainability in concrete production and utilization sector.


2020 ◽  
Vol 13 (2) ◽  
pp. 137
Author(s):  
Dr. Akhmad Suryadi, BS., MT

The advancement era, the use of strapping band in the process of shipping goods was increases because of the more practical needs and stronger straps make the waste from strapping band was increases. With a large amount of waste by shredding it into smaller sizes it can be used as a substitute for fine aggregate in concrete mixture with synthetic fiber reinforced concrete concept at the Laboratory of Civil Engineering Politeknik Negeri Malang. The objectives of this research were to analyze the characteristics of concrete with the substitution of strapping band waste against fine aggregate in compressive strength and split tensile strength test. The research method including: aggregate test and strapping band test, the mix design of concrete mixture was using the reference SNI 03-2834-2000. The experiments sample for each variation of 0%, 5%, and 8% were performed with 24 cylinder specimens for compressive strength and 6 cylinder specimens for split tensile strength. The compressive strength on 28 days with 0%, 5%, and 8% variation resulted in 27.67 kg/cm2; 26.82 kg/cm2; 17.83 kg/cm2. The split tensile strength on 28 days with 0% 5%, and 8% variation resulted in 2.42 kg/cm2; 1.90 kg/cm2; 1.51 kg/cm2. The average weight of cylinder specimens with 0%, 5%, and 8% variation resulted in 12.62 kg; 12.04 kg; 11.61 kg. Substitution of strapping band waste decreases compressive strength, split tensile strength and average weight concrete. Key words : Strapping band waste, compressive strength, split tensile strength


Now a days increase in population increases the demand of concrete for construction purpose and Aggregates are the important constituents in concrete.Re-use of demoliation waste avoids the problem of waste disposal and is also helpful in reducing the gap between demand and supply of fresh aggregates. This research deals with partial replacement of natural coarse aggregates (NCA) with recycled coarse aggregates (RCA) of age group 30 years and 35 years in different proportions like 20%, 30%, 40% . For this, M20 grade of concrete is adopted. Curing of specimens were done for 7days and 28 days to attain the maximum strengths. Partial replacement of fine aggregate with Granite powder at 5%, 10%, 15% were done to reduce the waste percentage as well to gain more strength. After casting the specimens of RCA with Granite powder replacement, curing was done and the specimens were tested for compressive and tensile strengths. Obtained results of compressive and tensile strengths of RCA concrete mix were compared with conventional concrete. In this direction, an experimental investigation of compressive and tensile strength was undertaken to use RCA as a partial replacement in concrete. It was observed that the concrete with recycled aggregates of 30years and 35years age group achieved maximum compressive strength of 29.03 N/mm2 , 28.96 N/mm2 and tensile strength of 11.91 N/mm2 , 10.34 N/mm2 were obtained at 40%replacement of RCA respectively. It is found that the compressive strength and Split tensile strength of RAC with copper slag was increased 8.20% and 2.90% when compared with the RAC.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


2020 ◽  
Vol 8 (6) ◽  
pp. 263-269
Author(s):  
Jigyasa Shukla ◽  
Harsh Gupta

This paper present the study of various strength such as compressive strength, split tensile strength and flexural strength during 7 and 28 day. It is construct the specimens size 15cm X 15cm X 15cm for testing purpose which depend upon the size of aggregate. Test results are indicated that strength performance of concrete well as in durability aspect are improved using of Silica fume


In an attempt to renovate waste product into constructive material for the building purpose, this research considered the use of corn cob ash (CCA) as a partial replacement of cement. Hence, in this research, we have proposed an eco-friendly solution by investigating the utilization of corncob ash with 0, 5, 10 and 15% replacement for cement in M30 grade of concrete Mechanical Properties such as compressive strength, Split tensile strength and Flexural strength at 7,14,28 days are examined in laboratory. The results reveal that Corn Cob Ash can be used as a partial replacement for cement which in turn reduces the emission of greenhouse gases.


Sign in / Sign up

Export Citation Format

Share Document