scholarly journals KUAT TEKAN BETON AWAL TINGGI DENGAN VARIASI PENAMBAHAN SUPERPLASTICIZER DAN SILICA FUME

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Hakas Prayuda

Concrete is one of the construction materials of combination between cement, fine aggregate, coarse aggregate, and water mixed into one solid mass. The work of concrete making can be added a mineral additive as well as chemical additive (admixture) for the interest in construction work. In some cases construction work is desirable for concrete to produce optimum strength during the early age of the concrete so that the timing of concreting work can be shortened. The strength of concrete at the early age can be increased with added mineral (additive) and chemical (admixture) materials. This research made a mixture of concrete with 7 variations of mixture with total specimen 54 sample of cylindrical size with diameter 15 cm and height 30 cm. Tests conducted in the form of testing workability and compressive strength of concrete at the age of 3 days, 7 days and 28 days. Through this study obtained the right composition to make concrete with a high early age of compressive strength.

Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2020 ◽  
Vol 5 (2) ◽  
pp. 77
Author(s):  
Anissa Diyah Lestari ◽  
Luky Indra Gunawan ◽  
Dyah Julia Syifa ◽  
Ronny Wahyu Wibowo ◽  
Hendramawat Aski Safarizki

AbstrakPada era teknologi sekarang ini, beton adalah sebagai salah satu bahan bangunan yang paling banyak digunakan di Indonesia. Inovasi diperlukan untuk peningkatan mutu beton dalam kuat tekan beton dan harga lebih murah dibandingkan dengan beton normal. Limbah penambangan batu kapur di Wonogiri tidak dimanfaatkan dengan baik. Sehingga menimbulkan polusi udara dan mencemari lingkungan di sekitar penambangan. Maka dari itu, inovasi ini menggunakan limbah kalsit untuk ditambahkan sebagai bahan tambah pembuatan beton. Luaran yang diharapkan dalam penelitian ini adalah dapat mengetahui komposisi yang pas untuk penambahan kalsit dalam campuran pembuatan beton dan menjadikan beton dengan bahan tambah limbah kalsit sebagai beton inovatif ramah lingkungan dan memiliki nilai ekonomis. Serta draft artikel ilmiah tentang beton inovatif yang dituangkan dalam sebuah draft artikel ilmiah, laporan kemajuan dan laporan akhir. Hasil yang telah dicapai saat ini berdasarkan indikator keberhasilan jangka pendek, yaitu telah dilaksanakannya penelitian dan pembuatan beton dengan bahan tambah kalsit dengan beberapa varian, serta pengujian sampel beton setelah berumur 14 hari. Pada penelitian ini mengetahui komposisi optimum penambahan kalsit terhadap kuat tekan beton, dengan penambahan kadar kalsit sebesar 5%, 9%, dan 15% benda uji yang digunakan adalah silinder berdiameter 15 cm dengan tinggi 30 cm sebanyak 9 buah dimana pengujian dilakukan pada umur 14 hari. Hasil analisis data pengujian kuat tekan beton kalsit adanya peningkatan pada variasi 9% kalsit sebesar 20,71 MPa (4.12%) dibandingkan beton normal 19,89 MPa. Maka kesimpulannya penggunaan kalsit dapat meningkatkan kuat tekan beton.Kata Kunci: Efektivitas, Beton SCC, Kalsit, Kuat TekanAbstractConcrete is one of the most widely used building materials in Indonesia In the current technological era. Innovation is needed to improve concrete quality in concrete compressive strength and prices are cheaper than normal concrete. Waste from limestone mining in Wonogiri is not utilized properly. So that it causes air pollution and pollutes the environment around mining. Therefore, this innovation uses calcite waste to be added as an ingredient to add concrete. The expected output in this study is to be able to find out the right composition for the addition of calcite in a mixture of concrete making and to make concrete with calcite added waste as an innovative concrete that is environmentally friendly and has economic value. As well as the draft scientific article about innovative concrete as outlined in a draft scientific article, progress report and final report. The results that have been achieved at present are based on short-term success indicators, namely the research and manufacture of concrete with calcite added ingredients with several variants, as well as testing of concrete samples after being 14 days old. In this study, the optimum composition of calcite was added to the compressive strength of concrete, with the addition of calcite levels of 5%, 9%, and 15%. The test material used was a cylindrical diameter of 15 cm with a height of 9 cm in which testing was done at 14 days . The results of the analysis of the test data for compressive strength of calcite concrete was an increase in the variation of 9% of calcite by 20.71 MPa (4.12%) coMPared to normal concrete of 19.89 MPa. So the conclusion is the use of calcite can increase the concrete compressive strength.Keywords: Effectiveness, SCC Concrete, Calcite, Compressive Strength


Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


2019 ◽  
Vol 26 (1) ◽  
pp. 449-464 ◽  
Author(s):  
Mifeng Gou ◽  
Longfei Zhou ◽  
Nathalene Wei Ying Then

AbstractOne of the advantages of cement and the cement concrete industry in sustainability is the ability to utilize large amounts of industrial solid wastes such as fly ash and ground granulated blast furnace slag. Tailings are solid wastes of the ore beneficiation process in the extractive industry and are available in huge amounts in some countries. This paper reviews the potential utilization of tailings as a replacement for fine aggregates, as supplementary cementitious materials (SCMs) in mortar or concrete, and in the production of cement clinker. It was shown in previous research that while tailings had been used as a replacement for both fine aggregate and cement, the workability of mortar or concrete reduced. Also, at a constant water to cement ratio, the compressive strength of concrete increased with the tailings as fine aggregate. However, the compressive strength of concrete decreased as the replacement content of the tailings as SCMs increased, even whentailings were ground into smaller particles. Not much research has been dedicated to the durability of concrete with tailings, but it is beneficial for heavy metals in tailings to stabilize/solidify in concrete. The clinker can be produced by using the tailings, even if the tailings have a low SiO2 content. As a result, the utilization of tailings in cement and concrete will be good for the environment both in the solid waste processing and virgin materials using in the construction industry.


Author(s):  
Daniel Zawal ◽  
Krzysztof Górski ◽  
Agnieszka Dobosz

Biodeterioration of construction materials is an undesired phenomenon, generating high costs of constraction repairs. On the other hand, occurrence of some bacteria can affect prevention and self repair of fractures formed in concrete. Biodeposition is an effective solution for increasing compressive strength of concrete, extending durability of concrete constructions and renovating limestone elements in facades of historic buildings.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


Concrete is a widely used material in all construction work. The aim of the project is to study the behavior of concrete with replacement of E waste. The fine aggregate and coarse aggregate are naturally available due to increase in demand it is over exploited. The waste utilization is sustainable solution to environmental problems Waste from electric and electronic equipment is used as an E waste replacement for coarse aggregate in concrete which is used in the construction .Therefore the effects have been made to study the use of E waste components as a partial replacement of coarse aggregate in 5%, 10% and 15%. To determine the optimum percentage of E waste that can be replaced for coarse aggregate the compressive strength and split tensile strength of concrete to be studied. After determining the optimum percentage of E waste that can be replaced with coarse aggregate. The comparison of the conventional and optimum percentage of E waste replaced with concrete has been done


2019 ◽  
Vol 5 (3) ◽  
pp. 108
Author(s):  
Muhammad Malik Ibrahim ◽  
Priyanto Saelan

ABSTRAKSalah satu limbah yang dapat digunakan sebagai pengganti bahan pembuat beton adalah abu batu. Abu batu merupakan limbah dari proses pemecahan bongkahan batu. Ditinjau dari ukuran butirannya maka abu batu merupakan agregat halus. Abu batu memiliki penyerapan air yang lebih tinggi daripada pasir alami, maka dari itu untuk mendapatkan kelecakan campuran beton yang sama dengan kelecakan campuran beton menggunakan pasir alami, penggunaan abu batu sebagai agregat halus dalam campuran beton perlu tambahan air. Namun hal ini akan menyebabkan faktor air-semen bertambah. Sehingga hasil kuat tekan akan menurun. Hal ini sesuai dengan hubungan antara kuat tekan beton dengan faktor air-semen. Perekayasaan yang dilakukan adalah dengan menaikkan faktor granular (G) dan menaikkan kuat tekan rencana berdasarlan teori Dreux. Abu batu pada penelitian ini digunakan sebagai substitusi pasir alami dengan proporsi 0%, 20%, 40%, 60%, 80%, dan 100%. Hasil penelititan ini memperlihatkan penggunaan abu batu sebagai agregat halus lebih dari 40% akan sangat drastis menurunkan kuat tekan beton.Kata kunci: perekayasaan, substitusi, campuran beton, abu batu, agregat halus ABSTRACTOne of the wastes that can be used as a substitute for concrete materials is stone ash. Stone ash is a waste from the process of stone crusher. Consider from the size of the grain, stone ash as fine aggregate. Stone ash has a higher water absorption than natural sand, therefore to get the concrete workability that is the same as the concrete workability using natural sand, the use of stone ash as fine aggregate in the concrete mixture needs additional water. But this will cause the cement-water ratio to increase. So that the compressive strength will decrease. This is following the relationship between the compressive strength of concrete and the cement-water ratio. Engineering is done by increasing the granular factor (G) and increasing the compressive strength of the plan based on Dreux theory. Stone ash in this study was used as a substitute for natural sand with a proportion of 0%, 20%, 40%, 60%, 80%, and 100%. The results of this research show that the use of stone ash as fine aggregate of more than 40% will greatly reduce the compressive strength of the concrete.Keywords: engineering, substitute, concrete mixture, stone ash, fine aggregate


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Sign in / Sign up

Export Citation Format

Share Document