scholarly journals Pharmacological Properties of CDBT in Hypoxia-induced Neuronal Cell Injury and Their Underlying Mechanisms

2019 ◽  
Vol 40 (3) ◽  
pp. 425-442
Author(s):  
Sang-kyu Park ◽  
Eun-sun Jung ◽  
Ji-yoon Cha ◽  
Hyun-kyoung Cho ◽  
Ho-ryong Yoo ◽  
...  
Author(s):  
Ruya Çolak ◽  
Aslı Celik ◽  
Gulden Diniz ◽  
Senem Alkan Özdemir ◽  
Osman Yilmaz ◽  
...  

Objective This study aimed to evaluate the efficacy of Pycnogenol (PYC) and its antioxidant and antiapoptotic effect in an experimental hypoxic-ischemic (HI) rat model. Study Design A total of 24 Wistar albino rats who were on the seventh postnatal day were divided into three groups with developed HI brain injury model under the sevoflurane anesthesia: 40 mg/kg PYC was given to Group A, saline was given to Group B, and the sham group was Group C. Neuronal apoptosis was investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling and immunohistochemically stained manually with primer antibodies of tumor necrosis factor-α and interleukin-1β. Results The neuronal cell injury was statistically lower in the PYC treatment group. Conclusion This is the first study that investigates the role of PYC in the HI brain injury model. PYC reduces apoptosis and neuronal injury in the cerebral tissue of the rats. PYC may be a protective agent against hypoxic-ischemic encephalopathy. Key Points


1998 ◽  
Vol 274 (6) ◽  
pp. G978-G983 ◽  
Author(s):  
Karen E. Hall ◽  
John W. Wiley

Understanding of the pathophysiology of neuronal injury has advanced remarkably in the last decade. This largely reflects the burgeoning application of molecular techniques to neuronal cell biology. Although there is certainly no consensus hypothesis that explains all aspects of neuronal injury, a number of interesting observations have been published. In this brief review, we examine mechanisms that appear to contribute to the pathophysiology of neuronal injury, including altered Ca2+ signaling, activation of the protease cascades coupled to apoptosis, and mitochondrial deenergization associated with release of cytochrome c, production of free radicals, and oxidative injury. Finally, evidence for neuroprotective mechanisms that may ameliorate cell injury and/or death are reviewed. Little information has been published regarding the mechanisms that mediate injury in the enteric nervous system, necessitating a focus on models outside the gastrointestinal (GI) tract, which may provide insights into enteric nervous system injury.


2019 ◽  
Vol 20 (17) ◽  
pp. 4238 ◽  
Author(s):  
Yaqi Ren ◽  
Chunlan Wang ◽  
Jiakun Xu ◽  
Shuaiyu Wang

Cafestol and kahweol are natural diterpenes extracted from coffee beans. In addition to the effect of raising serum lipid, in vitro and in vivo experimental results have revealed that the two diterpenes demonstrate multiple potential pharmacological actions such as anti-inflammation, hepatoprotective, anti-cancer, anti-diabetic, and anti-osteoclastogenesis activities. The most relevant mechanisms involved are down-regulating inflammation mediators, increasing glutathione (GSH), inducing apoptosis of tumor cells and anti-angiogenesis. Cafestol and kahweol show similar biological activities but not exactly the same, which might due to the presence of one conjugated double bond on the furan ring of the latter. This review aims to summarize the pharmacological properties and the underlying mechanisms of cafestol-type diterpenoids, which show their potential as functional food and multi-target alternative medicine.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jingxuan Sun ◽  
Boyu Yuan ◽  
Yancheng Wu ◽  
Yuhong Gong ◽  
Wenjin Guo ◽  
...  

Alzheimer’s disease (AD) is a common neurodegenerative disease. Aβ plays an important role in the pathogenesis of AD. Sodium butyrate (NaB) is a short-chain fatty acid salt that exerts neuroprotective effects such as anti-inflammatory, antioxidant, antiapoptotic, and cognitive improvement in central nervous system diseases. The aim of this study is to research the protective effects of NaB on neurons against Aβ toxicity and to uncover the underlying mechanisms. The results showed that 2 mM NaB had a significant improvement effect on Aβ-induced N2a cell injury, by increasing cell viability and reducing ROS to reduce injury. In addition, by acting on the GPR109A receptor, NaB regulates the expression of AD-related genes such as APP, NEP, and BDNF. Therefore, NaB protects N2a cells from Aβ-induced cell damage through activating GPR109A, which provides an innovative idea for the treatment of AD.


Author(s):  
Guoxin Cao ◽  
You Zhou ◽  
Jeong Soon Lee ◽  
Jung Yul Lim ◽  
Namas Chandra

The mechanism of mild traumatic brain injury (mTBI) is directly related to the relationship between the mechanical response of neurons and their biological/chemical functions since the neuron is the main functional component of brain.1 The hypotheses is that the external mechanical load will firstly cause the mechanical deformation of neurons, and then, when the mechanical deformation of neurons reaches to a critical point (the mechanical deformation threshold), it will initiate the chemical/biological response (e.g. neuronal function loss). Therefore, defining and measuring the mechanical deformation threshold for the neuronal cell injury is an important first step to understand the mechanism of mTBI. Typically, the mechanical response of neurons is investigated based on the deformation of in vitro model, in which the neurons are cultured on the elastic substrate (e.g. PDMS membranes). The elastic membrane is deformed by the external load, e.g. equibiaxial stretching. The substrate deformation is considered to be the deformation of neurons since the substrate is several orders stiffer than the neurons and the neurons are perfectly bonded with the substrate. The fluoresce method is typically used to test the cell injury, e.g. the cell vitality and the neuron internal ROS level.1, 2


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Dingping Yang ◽  
Dingwei Yang

The precise mechanisms underlying contrast-induced acute kidney injury (CI-AKI) are not well understood. Intracellular Ca2+overload is considered to be a key factor in CI-AKI. Voltage-dependent Ca2+channel (VDC) and Na+/Ca2+exchanger (NCX) system are the main pathways of intracellular Ca2+overload in pathological conditions. Here, we review the potential underlying mechanisms involved in CI-AKI and discuss the role of NCX-mediated intracellular Ca2+overload in the contrast media-induced renal tubular cell injury and renal hemodynamic disorder.


2013 ◽  
Vol 55 (3) ◽  
pp. 320-327 ◽  
Author(s):  
Kaori Tanaka ◽  
Yoichi Ishitsuka ◽  
Yuki Kurauchi ◽  
Keitaro Yamaguchi ◽  
Daisuke Kadowaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document