scholarly journals Large Scale 3D Printing of Complex Geometric Shapes in Construction

Author(s):  
Jochen Teizer ◽  
Alexander Blickle ◽  
Tobias King ◽  
Olaf Leitzbach ◽  
Daniel Guenther
2021 ◽  
Vol 11 (2) ◽  
pp. 563
Author(s):  
Tuong Phuoc Tho ◽  
Nguyen Truong Thinh

In construction, a large-scale 3D printing method for construction is used to build houses quickly, based on Computerized Aid Design. Currently, the construction industry is beginning to apply quite a lot of 3D printing technologies to create buildings that require a quick construction time and complex structures that classical methods cannot implement. In this paper, a Cable-Driven Parallel Robot (CDPR) is described for the 3D printing of concrete for building a house. The CDPR structures are designed to be suitable for 3D printing in a large workspace. A linear programming algorithm was used to quickly calculate the inverse kinematic problem with the force equilibrium condition for the moving platform; this method is suitable for the flexible configuration of a CDPR corresponding to the various spaces. Cable sagging was also analyzed by the Trust-Region-Dogleg algorithm to increase the accuracy of the inverse kinematic problem for controlling the robot to perform basic trajectory interpolation movements. The paper also covers the design and analysis of a concrete extruder for the 3D printing method. The analytical results are experimented with based on a prototype of the CDPR to evaluate the work ability and suitability of this design. The results show that this design is suitable for 3D printing in construction, with high precision and a stable trajectory printing. The robot configuration can be easily adjusted and calculated to suit the construction space, while maintaining rigidity as well as an adequate operating space. The actuators are compact, easy to disassemble and move, and capable of accommodating a wide variety of dimensions.


2021 ◽  
Vol 7 (2) ◽  
pp. 38
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Lazaros Tzounis ◽  
Emmanuel Velidakis ◽  
Nikolaos Mountakis ◽  
...  

In this study, nanocomposites with polyamide 12 (PA12) as the polymer matrix and multiwalled carbon nanotubes (MWCNTs) and carbon black (CB) at different loadings (2.5, 5.0, and 10.0 wt.%) as fillers, were produced in 3D printing filament form by melt mixing extrusion process. The filament was then used to build specimens with the fused filament fabrication (FFF) three-dimensional (3D) printing process. The aim was to produce by FFF 3D printing, electrically conductive and thermoelectric functional specimens with enhanced mechanical properties. All nanocomposites’ samples were electrically conductive at filler loadings above the electrical percolation threshold. The highest thermoelectric performance was obtained for the PA12/CNT nanocomposite at 10.0 wt.%. The static tensile and flexural mechanical properties, as well as the Charpy’s impact and Vickers microhardness, were determined. The highest improvement in mechanical properties was observed for the PA12/CNT nanocomposites at 5.0 wt.% filler loading. The fracture mechanisms were identified by fractographic analyses of scanning electron microscopy (SEM) images acquired from fractured surfaces of tensile tested specimens. The nanocomposites produced could find a variety of applications such as; 3D-printed organic thermoelectric materials for plausible large-scale thermal energy harvesting applications, resistors for flexible circuitry, and piezoresistive sensors for strain sensing.


2017 ◽  
Vol 1 (1-4) ◽  
pp. 69-76 ◽  
Author(s):  
Jean-Baptiste Izard ◽  
Alexandre Dubor ◽  
Pierre-Elie Hervé ◽  
Edouard Cabay ◽  
David Culla ◽  
...  

Author(s):  
Zhengkai Wu ◽  
Thomas M. Tucker ◽  
Chandra Nath ◽  
Thomas R. Kurfess ◽  
Richard W. Vuduc

In this paper, both software model visualization with path simulation and associated machining product are produced based on the step ring based 3-axis path planning to demo model-driven graphics processing unit (GPU) feature in tool path planning and 3D image model classification by GPU simulation. Subtractive 3D printing (i.e., 3D machining) is represented as integration between 3D printing modeling and CNC machining via GPU simulated software. Path planning is applied through material surface removal visualization in high resolution and 3D path simulation via ring selective path planning based on accessibility of path through pattern selection. First, the step ring selects critical features to reconstruct computer aided design (CAD) design model as STL (stereolithography) voxel, and then local optimization is attained within interested ring area for time and energy saving of GPU volume generation as compared to global all automatic path planning with longer latency. The reconstructed CAD model comes from an original sample (GATech buzz) with 2D image information. CAD model for optimization and validation is adopted to sustain manufacturing reproduction based on system simulation feedback. To avoid collision with the produced path from retraction path, we pick adaptive ring path generation and prediction in each planning iteration, which may also minimize material removal. Moreover, we did partition analysis and g-code optimization for large scale model and high density volume data. Image classification and grid analysis based on adaptive 3D tree depth are proposed for multi-level set partition of the model to define no cutting zones. After that, accessibility map is computed based on accessibility space for rotational angular space of path orientation to compare step ring based pass planning verses global all path planning. Feature analysis via central processing unit (CPU) or GPU processor for GPU map computation contributes to high performance computing and cloud computing potential through parallel computing application of subtractive 3D printing in the future.


2021 ◽  
Author(s):  
◽  
Matthew O'Hagan

<p>The current linear use of plastic products follows a take, make and waste process. Commonly used by large scale industries, including the commercial fishing industry, this process results in approximately 8 million tonnes of plastic entering the ocean every year. While the fishing industry supplies livelihoods, a valuable food source and financial capital to millions of people worldwide, it’s also a significant contributor to the ocean plastics crisis. Without effective recycling schemes, an estimated 640,000 tonnes of plastic fishing gear is abandoned, lost or discarded within the ocean every year. New Zealand is no exception to this problem, as China’s waste import ban, as well as a lack of local recycling infrastructures, has resulted in the country’s commercial fishing gear polluting local coastlines as well as islands in the pacific. With the only other option for the plastic fishing gear being landfill, there is a critical need for circular initiatives that upcycle used plastic fishing gear locally into eco-innovative designs.  This research examines the issue by investigating how used buoys, aquaculture ropes and fishing nets from New Zealand’s fishing company ‘Sanford’ may be upcycled into eco-innovative designs through distributed manufacturing technologies. It introduces the idea of the circular economy, where plastic fishing gear can be reused within a technical cycle and explores how 3D printing could be part of the solution as it provides local initiatives, low material and energy usage and customisation. Overall, the research follows the research through design based on design criteria approach. Where materials, designs and systems are created under the refined research criteria, to ensure the plastic fishing gear samples are upcycled effectively into eco-innovative designs through 3D printing.  The tangible outputs of this research demonstrate how a circular upcycling system that uses distributed manufacturing technologies can create eco-innovative designs and provide a responsible disposal scheme for plastic fishing gear. It provides a new and more sustainable waste management scheme that could be applied to a range of plastic waste streams and diverts materials from entering the environment by continuously reusing them within the economy.</p>


Author(s):  
Nelyub Vladimir Aleksandrovich Et al.

This paper contains an overview of world trends in the development of the TFP technologyenabling 3D printing of carbon fiber reinforced plastics. The review of the equipment used for the automated preformpatching is included. Primary factors restraining the large-scale implementation of the TFP technology in the manufacture are identified, and prospective research trends for further development of the technology are proposed.


Author(s):  
Azadeh Haghighi ◽  
Abdullah Mohammed ◽  
Lihui Wang

Abstract An emerging trend in smart manufacturing of the future is robotic additive manufacturing or 3D printing which introduces numerous advantages towards fast and efficient printing of high-quality customized products. In the case of the construction industry, and specifically in large-scale settings, multi-robotic additive manufacturing (i.e., adopting a team of 3D printer robots) has been found to be a promising solution in order to overcome the existing size limitations. Consequently, several research efforts regarding the development and control of such robotic additive manufacturing solutions have been reported in the literature. However, given the increasing environmental concerns, establishing novel methodologies for energy-efficient processing and planning of these systems towards higher sustainability is necessary. This paper presents a novel framework towards energy-efficient multi-robotic additive manufacturing and describes the overall challenges with respect to the energy efficiency. The energy module of the proposed framework is implemented in a simulation environment. In addition, a systematic approach for energy-aware robot positioning is introduced based on the novel concept of reciprocal energy map. The reciprocal energy map is established based on the original energy map calculated by the energy module and can be used for identifying the low energy zones for positioning and relocation of robots during the printing process.


2021 ◽  
Vol 27 (3) ◽  
pp. 465-474
Author(s):  
Martin Krčma ◽  
David Škaroupka ◽  
Petr Vosynek ◽  
Tomáš Zikmund ◽  
Jozef Kaiser ◽  
...  

Purpose This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material. Design/methodology/approach The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out. Findings The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity. Originality/value The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.


History of additive manufacturing started in the 1980s in Japan. Stereolithography was invented first in 1983. After that tens of other techniques were invented under the common name 3D printing. When stereolithography was invented rapid prototyping did not exists. Tree years later new technique was invented: selective laser sintering (SLS). First commercial SLS was in 1990. At the end of 20t century, first bio-printer was developed. Using bio materials, first kidney was 3D printed. Ten years later, first 3D Printer in the kit was launched to the market. Today we have large scale printers that printed large 3D objects such are cars. 3D printing will be used for printing everything everywhere. List of pros and cons questions rising every day.


Sign in / Sign up

Export Citation Format

Share Document